$\bigcap_{k=1}^{5} A_k = [-1, \frac{1}{5})$

 $\bigcup_{k=1}^{5} A_k = [-5, 1).$ $\overline{\bigcup_{k=1}^{5} A_k} = [1, 5].$

1. $A_1 = [-1, 1), A_2 = [-2, \frac{1}{2}), \dots, A_5 = [-5, \frac{1}{5})$ (correct interpretation of A_k)

So

and

and so

2. The statement is true on domain \mathbb{N} : Take x = 1, then $\forall y \left[(1^2 + 1)y = (1 + 1)\sqrt{y^2} \right]$, since y > 0.

The statement is false on domain \mathbb{Z} : Since then the statement must be true for all y > 0, so $x^2 + 1 = x + 1$, and so x = 0 or x = 1But if x = 0 or x = 1 then the statement is false for y < 0. (if y < 0 then $\sqrt{y^2} = -y$)

3. By definition, an integer n is divisible by 6 if it can be written as $n = 6\ell$ for some integer ℓ .

Basis step for n = 1:

 $7^1 - 1 = 6 = 6 \cdot 1$ (take $\ell = 1$).

So the statement is correct for n = 1.

Induction step:

Let $k \ge 1$ and suppose that: $7^{k} - 1$ is divisible by 6, so $7^{k} - 1 = 6\ell$ for some $\ell \in \mathbb{Z}$ (Induction hypothesis: IH) We must show that IH implies: $7^{k+1} - 1$ is divisible by 6, so we must show that there is an integer $m \in \mathbb{Z}$ such that $7^{k+1} - 1 = 6m$. Well: $7^{k+1} - 1 = 7 \cdot 7^{k} - 1$. Now applying IH ($7^{k} = 6\ell + 1$) we get: $7 \cdot 7^{k} - 1 = 7 \cdot (6\ell + 1) - 1 = 7 \cdot 6\ell + 7 - 1 = 6 \cdot 7\ell + 6 = 6 \cdot (7\ell + 1)$. Hence, $7^{k+1} - 1 = 6m$ for $m = 6\ell + 1$. This proves the induction step. Now we obtain from the principle of mathematical induction that for all $n \ge 1$: $7^{n} - 1$ is divisible by 6.

4. (a) Choose 5 places out of 10 for the zeros: $\binom{10}{5}$ possibilities.

The other 5 places can be filled with 1's, 2's or 3's: 3^5 possibilities.

So the total number of strings is: $\binom{10}{5}3^5$ (= 17.010).

(b) The number of zeros is exactly 5, and of the remaining 5 places the number of ones is exactly 3 or exactly 4 or exactly 5 (and the rest of the places have 2's or 3's). The number of strings corresponding to these situations is:

$$\binom{10}{5}\binom{5}{3}2^2$$
, $\binom{10}{5}\binom{5}{4}2^1$ and $\binom{10}{5}\binom{5}{5}2^0$.

So the total number of strings is:

$$\binom{10}{5}\binom{5}{3}4 + \binom{10}{5}\binom{5}{4}2 + \binom{10}{5}\binom{5}{5} \qquad (= 6.930).$$