Solution/Correction standard, Test Mathematics A; September 18, 2015.

1. $A_{1}=[-1,1), A_{2}=\left[-2, \frac{1}{2}\right), \ldots, A_{5}=\left[-5, \frac{1}{5}\right.$) (correct interpretation of A_{k})

So

$$
\bigcap_{k=1}^{5} A_{k}=\left[-1, \frac{1}{5}\right)
$$

and
and so

$$
\begin{gathered}
\bigcup_{k=1}^{5} A_{k}=[-5,1) . \\
\overline{\bigcup_{k=1}^{5} A_{k}}=[1,5] .
\end{gathered}
$$

2. The statement is true on domain \mathbb{N} :

Take $x=1$, then $\forall y\left[\left(1^{2}+1\right) y=(1+1) \sqrt{y^{2}}\right]$, since $y>0$.
The statement is false on domain \mathbb{Z} :
Since then the statement must be true for all $y>0$,
so $x^{2}+1=x+1$, and so $x=0$ or $x=1$
But if $x=0$ or $x=1$ then the statement is false for $y<0$. (if $y<0$ then $\sqrt{y^{2}}=-y$)
3. By definition, an integer n is divisible by 6 if it can be written as $n=6 \ell$ for some integer ℓ.

Basis step for $n=1$:
$7^{1}-1=6=6 \cdot 1$ (take $\ell=1$).
So the statement is correct for $n=1$.
Induction step:
Let $k \geq 1$ and suppose that:
$7^{k}-1$ is divisible by 6 , so $7^{k}-1=6 \ell$ for some $\ell \in \mathbb{Z} \quad$ (Induction hypothesis: IH)
We must show that IH implies: $7^{k+1}-1$ is divisible by 6 ,
so we must show that there is an integer $m \in \mathbb{Z}$ such that $7^{k+1}-1=6 \mathrm{~m}$.
Well: $\quad 7^{k+1}-1=7 \cdot 7^{k}-1$. Now applying $\mathrm{IH}\left(7^{k}=6 \ell+1\right)$ we get:
$7 \cdot 7^{k}-1=7 \cdot(6 \ell+1)-1=7 \cdot 6 \ell+7-1=6 \cdot 7 \ell+6=6 \cdot(7 \ell+1)$.
Hence, $7^{k+1}-1=6 m$ for $m=6 \ell+1$. This proves the induction step.
Now we obtain from the principle of mathematical induction that for all $n \geq 1$:
$7^{n}-1$ is divisible by 6 .
4. (a) Choose 5 places out of 10 for the zeros: $\binom{10}{5}$ possibilities.

The other 5 places can be filled with 1's, 2's or 3's: 3^{5} possibilities.
So the total number of strings is: $\quad\binom{10}{5} 3^{5} \quad(=17.010)$.
(b) The number of zeros is exactly 5 , and of the remaining 5 places the number of ones is exactly 3 or exactly 4 or exactly 5 (and the rest of the places have 2's or 3's).
The number of strings corresponding to these situations is:
$\binom{10}{5}\binom{5}{3} 2^{2}, \quad\binom{10}{5}\binom{5}{4} 2^{1} \quad$ and $\quad\binom{10}{5}\binom{5}{5} 2^{0}$.
So the total number of strings is:

$$
\binom{10}{5}\binom{5}{3} 4+\binom{10}{5}\binom{5}{4} 2+\binom{10}{5}\binom{5}{5} \quad(=6.930)
$$

