Course : Mathematics β 1, Bernoulli

Date : November 10, 2017 Time : 13.45 – 16.45 hrs

Motivate all your answers.

The use of electronic devices is not allowed.

1. [3pt] Solve the initial value problem

$$\begin{cases} y' + (3x^2 - 1)y = 0, \\ y(1) = 1. \end{cases}$$

2. Define
$$z = \frac{2i}{1 - i\sqrt{3}}$$

- (a) [2 pt] Find the modulus (absolute value) and the argument of z.
- \mathscr{Y} (b) [2 pt] Does there exist a $n \in \mathbb{N}$, such that $z^n = i$? Prove your claim. If such an n exists, determine the smallest possible value of n.

3. [5 pt] Solve the given initial-value problem

$$\begin{cases} y'' + y = x^2, \\ y(0) = 1, \\ y'(0) = 0. \end{cases}$$

- 4. Consider the points $P(2, \sqrt{3}, 3)$ and $Q(2, -\sqrt{3}, -3)$. As usual O(0, 0, 0).
 - (a) [2 pt] Find the vector of length 1 in the direction of \overrightarrow{QP} .
 - (b) [2 pt] Find the angle $\angle QOP$ (the angle between the line segments OP and OQ).
 - (c) [2 pt] Compute the vector projection of \overrightarrow{OQ} onto the straight line through points O and P.

5. Given are the three points P(1,1,0), Q(0,2,1) and R(3,2,-1) in \mathbb{R}^3 .

Let V be the plane that passes through P,Q and R and let ℓ_{α} be the line through the origin in the direction of vector $\mathbf{v}=(\alpha,2,-6)$, for some $\alpha\in\mathbb{R}$

- (a) [3 pt] Give the equation of V and determine the value of α such that $\ell_{\alpha} \perp V$.
- (b) [2 pt] Prove or disprove the following statement:

$$\exists \alpha \in \mathbb{R}(\ell_{\alpha} \subset V).$$

6. Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by:

$$f(x) = \begin{cases} \frac{\sin(\sin x)}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0. \end{cases}$$

- (a) [3 pt] Show that f is continuous in 0.
- (b) [4 pt] For which $x \in \mathbb{R}$ is f differentiable? Calculate f'(x) for these values of x.
- (c) [2 pt] Let A be the set of all roots of the function f (i.e the solutions of f(x)=0). Describe A.
- 7. [4 pt] Use mathematical induction to prove the statement

$$\frac{d}{dx}x^n = nx^{n-1}$$

for all $n \in \mathbb{N}, n \ge 1$

[Hint: use the product rule]

Total: 36 points