Solution/Correction standard, Test Mathematics B1; October 4, 2013.

1. (a) Several possible solutions:

[i] Method known from secondary school: show that f/(z) > 0 for all z € R.
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[il With definition: suppose f(a) = f(b), show that a = b: [0.5 pt]
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Write f(z) as g(e®) where g(u) = Z—H The function g maps the interval (0, c0)
onto (—1,1). The range of f is (—1,1). This is also the domain of f~1. [1 pt]



For the inverse: solve y = f(x):
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We have f~!: (—1,1) — R with (replace y by x):

f ) =In(1+2) —In(1 — ).
Solution 1: differentiate f~!(x):

BN 1 1 2 2
e i Sl (s (R R w2

From this follows (f~1)(0) =2

Solution 2: use (f~')'(y) = 1/f'(x) where f(z) = y:
f(0)=0

and
2e*

f/(ZL‘) =—Q therefore f/(o) =

(ex + 1)

. Write down the definition of derivative in x:
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Calculate this limit for f(z) = x2:
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3.

(a) Solve the homogeneous equation using the integrating factor:

’U(l‘) _ 6f3x2—1dm _ ex?’—w.

The general solution then is

Use the inital condition to solve C:

1=y(1)=Ce hence C=1.

Write down the solution:
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(b) Use the integrating factor v(z) = e’ =T from (a). Find an antiderivative of v(z)-z2e®:
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A particular solution is found by dividing the result by v:
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