Solution/Correction standard, Test Mathematics B1; October 4, 2013.

1. (a) Several possible solutions:
[i] Method known from secondary school: show that $f^{\prime}(x)>0$ for all $x \in \mathbb{R}$.
$f^{\prime}(x)=\frac{2 x}{\left(e^{x}+1\right)^{2}}$
$\frac{2 x}{\left(e^{x}+1\right)^{2}}>0 \quad$ for all $x \in \mathbb{R}$
[0.5 pt]
[ii] With definition: suppose $f(a)=f(b)$, show that $a=b$:

$$
\begin{aligned}
\frac{e^{a}-1}{e^{a}+1} & =\frac{e^{b}-1}{e^{b}+1} \\
\left(e^{a}-1\right)\left(e^{b}+1\right) & =\left(e^{b}-1\right)\left(e^{a}+1\right) \\
e^{a+b}+e^{a}-e^{b}-1 & =e^{a+b}-e^{a}+e^{b}-1 \\
e^{a}-e^{b} & =-e^{a}+e^{b} \\
2 e^{a} & =2 e^{b} \\
e^{a} & =e^{b} \\
a & =b
\end{aligned}
$$

Flawless execution of the derivation gives [0.5 pt$]$.
(b)

Write $f(x)$ as $g\left(e^{x}\right)$ where $g(u)=\frac{u-1}{u+1}$. The function g maps the interval $(0, \infty)$ onto $(-1,1)$. The range of f is $(-1,1)$. This is also the domain of f^{-1}.
[1 pt]

For the inverse: solve $y=f(x)$:

$$
\begin{aligned}
y & =\frac{e^{x}-1}{e^{x}+1} \\
y\left(e^{x}+1\right) & =e^{x}-1 \\
y e^{x}+y & =e^{x}-1 \\
y e^{x}-e^{x} & =-1-y \\
(1-y) e^{x} & =1+y \\
e^{x} & =\frac{1+y}{1-y} \\
x & =\ln \left(\frac{1+y}{1-y}\right)=\ln (1+y)-\ln (1-y) .
\end{aligned}
$$

[1 pt]
We have $f^{-1}:(-1,1) \rightarrow \mathbb{R}$ with (replace y by x):

$$
f^{-1}(x)=\ln (1+x)-\ln (1-x) .
$$

(c) Solution 1: differentiate $f^{-1}(x)$:

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{1+x}+\frac{1}{1-x}=\frac{2}{(1-x)(1+x)}=\frac{2}{1-x^{2}} .
$$

From this follows $\left(f^{-1}\right)^{\prime}(0)=2$
Solution 2: use $\left(f^{-1}\right)^{\prime}(y)=1 / f^{\prime}(x)$ where $f(x)=y$:

$$
f(0)=0
$$

and

$$
f^{\prime}(x)=\frac{2 e^{x}}{\left(e^{x}+1\right)^{2}} \text { therefore } f^{\prime}(0)=\frac{1}{2} .
$$

2. Write down the definition of derivative in x :

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} . \tag{0.5pt}
\end{equation*}
$$

Calculate this limit for $f(x)=x^{2}$:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h \\
& =2 x .
\end{aligned}
$$

3. (a) Solve the homogeneous equation using the integrating factor:

$$
\begin{equation*}
v(x)=e^{\int 3 x^{2}-1 d x}=e^{x^{3}-x} \tag{0.5pt}
\end{equation*}
$$

The general solution then is

$$
y(x)=\frac{1}{v(x)}=C e^{x-x^{3}}
$$

[0.5 pt]

Use the inital condition to solve C :

$$
1=y(1)=C e^{0} \quad \text { hence } \quad C=1
$$

Write down the solution:

$$
y(x)=e^{x-x^{3}}
$$

(b) Use the integrating factor $v(x)=e^{x^{3}-x}$ from (a). Find an antiderivative of $v(x) \cdot x^{2} e^{x}$:

$$
\begin{aligned}
\int v(x) \cdot x^{2} e^{x} d x & =\int e^{x^{3}-x} x^{2} e^{x} d x \\
& =\int x^{2} e^{x^{3}} d x \\
& =\frac{1}{3} e^{x^{3}} .
\end{aligned}
$$

A particular solution is found by dividing the result by v :

$$
y(x)=\frac{1}{v(x)} \cdot \frac{1}{3} e^{x^{3}}=\frac{1}{3} e^{x-x^{3}} e^{x^{3}}=\frac{1}{3} e^{x}
$$

