Solution/Correction standard, 2nd Test Mathematics B1; October 25, 2013.

1. (a) $[1 \mathrm{pt}]$ Show that the dot product of \mathbf{u} and \mathbf{v} is 0 .
[. 5 pt$]$
$\mathbf{u} \cdot \mathbf{v}=\langle 1,-1,-1\rangle \cdot\langle-1,2,-3\rangle=-1-2+3=0 . \quad[.5 \mathbf{p t}]$
(b) $[1 \mathrm{pt}]$

$$
\begin{align*}
& {\left[\begin{array}{rr}
1-1 & \bar{X}^{1} \\
-1 & 2-3
\end{array}{\underset{-1}{1} \bar{X}_{2}^{1}}_{\mathbf{w}=\mathbf{u} \times \mathbf{v}=\langle 5,4,1\rangle} .\right.}
\end{align*}
$$

(c) [1 pt] Two alternatives:
(1) Vector v is a solution:

From (a) follows: \mathbf{v} is orthogonal to \mathbf{u}.
From (b) follows: \mathbf{v} is orthogonal to \mathbf{w}.
[1 pt]
Or:
(2) Calculate $\mathbf{u} \times \mathbf{w}$:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -1 \\
5 & \mathbf{X}_{1}^{1}
\end{array} \text { X }_{5}^{1} \bar{X}_{4}^{1}\right.} \\
& \mathbf{u} \times \mathbf{w}=\langle 3,-6,9\rangle .
\end{aligned}
$$

[1 pt]
2. (a) $[2 \mathrm{pt}]$ Rewrite z :

$$
\begin{gather*}
z=\frac{\sqrt{2}}{1-i}=\frac{\sqrt{2}}{1-i} \cdot \frac{1+i}{1+i}=\frac{\sqrt{2}(1+i)}{2}=\frac{1}{2} \sqrt{2}+\frac{1}{2} \sqrt{2} i \\
|z|^{2}=\left(\frac{1}{2} \sqrt{2}\right)^{2}+\left(\frac{1}{2} \sqrt{2}\right)^{2}=1 \tag{1pt}
\end{gather*}
$$

For the argument φ of z two methods can be used:

$$
\tan \varphi=\frac{\frac{1}{2} \sqrt{2}}{\frac{1}{2} \sqrt{2}}=1
$$

and z is in the right-half plane, hence $\varphi=\frac{\pi}{4}$.
[1 pt]
Alternatively, use a picture:

(b) [2 pt] From (a) follows: $z=e^{\frac{1}{4} \pi i}$ hence $z^{6}=e^{\frac{6}{4} \pi i}=e^{\frac{3}{2} \pi i}=-i$.

Therefore $\operatorname{Re} z^{6}=0$ and $\operatorname{Im} z^{6}=-1$.
3. (a) $[3$ pt $]$ Set up the characteristic equation:

$$
\lambda^{2}+4 \lambda+4=0
$$

This equation has one real solution:

$$
\lambda=-2 .
$$

The general solution of the differential equation then is

$$
c_{1} e^{-2 t}+c_{2} t e^{-2 t} .
$$

Finally, use the initial conditions to determine c_{1} and c_{2}.
From $y(0)=.2$ follows $c_{1}=0.2$
Differentiate y :

$$
y^{\prime}(t)=-0.4 e^{-2 t}+c_{2}(1-2 t) e^{-2 t}
$$

From $y^{\prime}(0)=-1.2$ follows $c_{2}=-0.8$
(b) $[2 \mathrm{pt}]$ From (a) follows

$$
y(t)=0.2 e^{-2 t}-0.8 t e^{-2 t} .
$$

We look for t_{0} where $y\left(t_{0}\right)=0$, in other words: t_{0} is the root of

$$
0.2 e^{-2 t}-0.8 t e^{-2 t}=0
$$

Rewrite the equation:

$$
(0.2-0.8 t) e^{-2 t}=0
$$

Since $e^{-2 x}$ is not equal to zero we have

$$
0.2-0.8 t=0
$$

which gives $t_{0}=\frac{1}{4}$.
Note: the graph of y looks like this:

