Mathematics A (Euclides) and B1 (Leibniz)

Solutions/correction standard for test Mathematics A + B1, Nov 4, 2013

1. (a) [1 pt] For example: p : "He wears a white T-shirt" and q : "The T-shirt he is wearing is not green". Then $p \rightarrow q$ is true, but $q \rightarrow p$ is false. Of course there are many more examples
[1 pt]
(b) [3 pt] Membership table for $(A \cup B)-C$ and $(A-B) \cup(B-C)$:

A	B	C	$A \cup B$	$(A \cup B)-C$	$A-B$	$B-C$	$(A-B) \cup(B-C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	1	1	0	1	1
0	1	1	1	0	0	0	0
1	0	0	1	1	1	0	1
1	0	1	1	0	1	0	1
1	1	0	1	1	0	1	1
1	1	1	1	0	0	0	0

[1.5 pt]
Conclusion:
The fifth and last column are not identical, so the statement is false.
[0.5 pt] These columns only differ in the sixth row, so in order to find a counterexample, we must take sets A, B and C such there is an element in the intersection $A \cap C$ that is not in B. For example $A=C=\{1\}$ and $B=\varnothing$.
Then $(A \cup B)-C=\varnothing$, but $(A-B) \cup(B-C)=\{1\}$.
[1 pt]
Incorrect table: -0.5 pt for each incorrect column.
If table is not correct but the way the conclusion is deduced from the table is: 0.5 pt .

A counterexample that is deduced from an incorrect table that is not a counterexample for the statement in the exercise: 0 pt (a counterexample must be checked)
2.
(a) $[2 \mathrm{pt}]$ Let $m, n \in \mathbb{Z}$ be both odd.

Then there exist $k, l \in \mathbb{Z}$ such that $m=2 k+1$ and $n=2 l+1$.
Then $m n=(2 k+1)(2 l+1)=4 k l+2 k+2 l+1=2(2 k l+k+l)+1$. [1 pt] So $m n$ can be written as $m n=2 s+1$, with $s \in \mathbb{Z}$, and therefore $m n$ is odd.
[0.5 pt]
(b) [4 pt] Basis step for $n=1: \quad 1^{3}+2 \cdot 1=3$, so the statement is correct for $n=1$ (take $\ell=1$).
[0.5 pt]
Induction step:
Let $k \geq 1$ and suppose that: $k^{3}+2 k$ is divisible by 3 , so $k^{3}+2 k=3 \ell$ for some $\ell \in \mathbb{Z}$ (Induction hypothesis: IH).
[1 pt]
We must show that IH implies:
$(k+1)^{3}+2(k+1)$ is divisible by 3 .

Well:

$$
\begin{align*}
(k+1)^{3}+2(k+1) & =k^{3}+3 k^{2}+3 k+1+2 k+2 \\
& =k^{3}+2 k+3\left(k^{2}+k+1\right) \tag{0.5pt}
\end{align*}
$$

Now IH implies that this is equal to $3 \ell+3\left(k^{2}+k+1\right)$.
[0.5 pt]
Rewriting this last expression yields: $3\left(\ell+k^{2}+k+1\right)$
So $(k+1)^{3}+2(k+1)$ is divisible by 3 .
[0.5 pt]
Now we obtain from the principle of mathematical induction that for all $n \in \mathbb{N}$: $n^{3}+2 n$ is divisible by 3 .
(From the proof it must be crystal clear whàt is supposed [1 pt] and whàt must be proved [1 pt]. In case of nonsense formulations like "Suppose it is correct FOR ALL n, so it also holds for $n+1$ ": at most 1 pt for the entire exercise)
3. (a) [1 pt] For each digit there are 10 possibilities. So by the rule of product: there are 10^{12} different strings.
(answer: [0.5 pt$]$, (some) argumentation: [0.5 pt$]$).
(b) $[3 \mathrm{pt}]$ The number of ones must be $6,7,8$ of 9 .

First we determine the number of strings with exactly 3 zeros and exactly 6 ones. Choose 3 digits for the zeros, this can be done in $\binom{12}{3}$ ways. For each choice for the zeros, there are $\binom{9}{6}$ possibilities to determine the digits for the 6 ones and for each choice for the zeros and the ones, there are 8^{3} possibilities for the remaining three digits (which cannot be 0 or 1).
[1 pt] Therefore, by the rule of product, the number of strings with exactly 3 zeros and exactly 6 ones is: $\binom{12}{3} \cdot\binom{9}{6} \cdot 8^{3}$.
[0.5 pt]
Similarly,the number of strings with exactly 3 zeros and exactly 7,8 or 9 ones is: $\binom{12}{3} \cdot\binom{9}{7} \cdot 8^{2}, \quad\binom{12}{3} \cdot\binom{9}{8} \cdot 8^{1}$, and $\binom{12}{3} \cdot\binom{9}{9} \cdot 8^{0}$ respectively. [1 pt]
Therefore the number of strings with 3 zeros and at least 6 ones is equal to:

$$
\begin{equation*}
\binom{12}{3} \cdot\binom{9}{6} \cdot 8^{3}+\binom{12}{3} \cdot\binom{9}{7} \cdot 8^{2}+\binom{12}{3} \cdot\binom{9}{8} \cdot 8+\binom{12}{3} . \tag{0.5pt}
\end{equation*}
$$

(Just the answer, without any argumentation: [1.5 pt]).
Note that the answer $\binom{12}{3} \cdot\binom{9}{6} \cdot 9^{3}$ (choose 6 digits for the ones and take for the remainig three digits any nonzero digit) is wrong.
4. (a) [1 pt] The function $f(x)=e^{\sin (x)}$ is not one-to-one:. An answer without motivation (even if it is the correct answer): 0 pt . Provide two numbers a and b with $a \neq b$ and $f(a)=f(b)$, for example $a=0$ and $b=\pi$.
[1 pt]
(b) [2 pt] The range of $\sin (x)$ is $[-1,1]$ The function e^{x} maps this interval to the interval $\left[\frac{1}{e}, e\right]$.
[1 pt] In order to conclude this, you need that e^{x} is an increasing function. If this argument is used: [1 pt].

Note that in fact also the continuity of e^{x} is required. Since continuity is not part of the curriculum, there is no deduction for not using this argument.
5.
(a) $[2 \mathrm{pt}] \quad \overrightarrow{R Q}=\langle 0,2 \sqrt{3}, 6\rangle$.
$|\overrightarrow{R Q}|=\sqrt{0+12+36}=\sqrt{48}=4 \sqrt{3}$.
The unit vector in the direction of $\overrightarrow{R Q}$ is $\left\langle 0, \frac{1}{2}, \frac{1}{2} \sqrt{3}\right\rangle$.
Note: deduct 0.5 pt if the answer is $\overrightarrow{Q R}=\left\langle 0,-\frac{1}{2},-\frac{1}{2} \sqrt{3}\right\rangle$.
(b) [2 pt] Write $P Q$ and $P R$ as vectors:

$$
\mathbf{u}=\overrightarrow{P Q}=\langle 2, \sqrt{3}, 3\rangle \quad \text { and } \quad \mathbf{v}=\overrightarrow{P R}=\langle 2,-\sqrt{3},-3\rangle .
$$

Calculate the lengths and the dot product of \mathbf{u} and \mathbf{v} :

$$
\begin{aligned}
|\mathbf{u}| & =\sqrt{4+3+9}=4 \\
|\mathbf{v}| & =\sqrt{4+3+9}=4 \\
\mathbf{u} \cdot \mathbf{v} & =4-3-9=-8
\end{aligned}
$$

If the $\varphi=\angle R P Q$, then

$$
\cos \varphi=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}=\frac{-8}{16}=-\frac{1}{2}
$$

[.5pt]
From this follows:

$$
\varphi=\frac{2}{3} \pi .
$$

[.5pt]
(c) [2 pt] Calculate the cross product of \mathbf{u} and \mathbf{v} :

$$
\mathbf{u} \times \mathbf{v}=\left[\begin{array}{cc}
2 & \sqrt{3} \tag{1pt}\\
2 & -\sqrt{3} \\
-3
\end{array} \times_{2}^{3} \times_{2}^{2} X_{-\sqrt{3}}^{\sqrt{3}}=\langle 0,12,-4 \sqrt{3}\rangle\right.
$$

The surface area of the triangle is

$$
\frac{1}{2}|\mathbf{u} \times \mathbf{v}|=\frac{1}{2} \sqrt{192}=4 \sqrt{3} .
$$

[1pt]
6.
(a) [2 pt] Calculate z^{2} :

$$
\begin{aligned}
z^{2} & =(\sqrt{2+\sqrt{3}}+i \sqrt{2-\sqrt{3}})^{2} \\
& =(\sqrt{2+\sqrt{3}})^{2}+(i \sqrt{2-\sqrt{3}})^{2}+2 i \sqrt{2+\sqrt{3}} \sqrt{2-\sqrt{3}} \\
& =2+\sqrt{3}-(2-\sqrt{3})+2 i \sqrt{(2+\sqrt{3})(2-\sqrt{3})} \\
& =2 \sqrt{3}+2 i \sqrt{4-3} \\
& =2 \sqrt{3}+2 i,
\end{aligned}
$$

so $\operatorname{Re}\left(z^{2}\right)=2 \sqrt{3}$ and $\operatorname{Im}\left(z^{2}\right)=2$.
Deduct .5 pt for every error.
(b) [1 pt] Use the result from (a):

$$
\begin{aligned}
\left|z^{2}\right| & =\sqrt{\left(\operatorname{Re} z^{2}\right)^{2}+\left(\operatorname{Im} z^{2}\right)^{2}} \\
& =\sqrt{(2 \sqrt{3})^{2}+2^{2}} \\
& =\sqrt{12+4}=4 .
\end{aligned}
$$

For the argument φ of z^{2} two methods can be used:

$$
\tan \varphi=\frac{\operatorname{Im} z^{2}}{\operatorname{Re} z^{2}}=\frac{2}{2 \sqrt{3}}=\frac{1}{3} \sqrt{3},
$$

and z^{2} is in the right-half plane, hence $\varphi=\frac{\pi}{6}$.
[0.5 pt]
Note: no points are awarded if the argument ' z ' is in the right-half plane' is missing, since tan is periodic with period π. The same holds if φ is calculated with arctan:

$$
\varphi=\arctan \left(\frac{\operatorname{Im} z^{2}}{\operatorname{Re} z^{2}}\right)=\ldots
$$

is wrong.
Alternatively, use a picture:

[0.5 pt]
(c) [1 pt] The number z^{6} can be calculated in several ways. The most convenient is to use the result from (b):

$$
\left|z^{6}\right|=\left|z^{2}\right|^{3}=4^{3}=64
$$

and

$$
\arg z^{6}=3 \arg z^{2}=3 \cdot \frac{\pi}{6}=\frac{\pi}{2}
$$

[0.5 pt]
Therefore

$$
z^{6}=64 e^{i \frac{\pi}{2}}=64 i,
$$

and consequently

$$
\operatorname{Re}\left(z^{6}\right)=0 \quad \text { and } \quad \operatorname{Im}\left(z^{6}\right)=64
$$

Note: The real and imaginary part of z^{6} need not to be presented in this way. The answer $z^{6}=64 i$ will be accepted as correct, but $z^{6}=64 e^{i \frac{\pi}{2}}$ is not.
Other methods (like Newton's binomium) may be used, but calculations might be tedious and are error prone. Nevertheless, if calculations are executed correctly and lead to the right answer ($" z^{6}=64 i$ " or " $\operatorname{Re}\left(z^{6}\right)=0$ and $\operatorname{Im}\left(z^{6}\right)=64$ "), 1 point is awarded.
7. [2 pt] If $y(x)=\ln \left(1+e^{x}\right)$, then by the chain rule:

$$
y^{\prime}(x)=\frac{1}{1+e^{x}} \cdot e^{x} .
$$

Notice that $e^{y(x)}=1+e^{x}$, hence

$$
\begin{aligned}
y^{\prime}(x) & =\frac{1}{1+e^{x}} \cdot e^{x} \\
& =\frac{1}{e^{y(x)}} \cdot e^{x} \\
& =e^{x-y(x)} .
\end{aligned}
$$

[1 pt]
8. [3 pt] Rewrite the differential equation in the form $y^{\prime}+a(x) y=b(x)$:

$$
\begin{equation*}
y^{\prime}+\frac{4}{x} y=\frac{3}{x^{2}} . \tag{0.5pt}
\end{equation*}
$$

The integrating factor is

$$
\begin{equation*}
v(x)=e^{\int a(x) \mathrm{d} x}=e^{\int \frac{4}{x} \mathrm{~d} x}=e^{4 \ln x}=x^{4} . \tag{0.5pt}
\end{equation*}
$$

The general solution is

$$
y(x)=\frac{1}{v(x)} \int v(x) b(x) \mathrm{d} x=\frac{1}{x^{4}} \int 3 x^{2} \mathrm{~d} x=\frac{x^{3}+c}{x^{4}} .
$$

[1 pt]
Use the initial condition to find c :

$$
0=y(1)=\frac{1^{3}+c}{1} \quad \Rightarrow \quad c=-1 .
$$

[0.5 pt]
Finally, write down the solution:

$$
\begin{equation*}
y(x)=\frac{x^{3}-1}{x^{4}} \quad \text { or } \quad y(x)=\frac{1}{x}-\frac{1}{x^{4}} . \tag{0.5pt}
\end{equation*}
$$

9. [4 pt] Step 1 (total: 1 pt): solve the homogeneous equation $y^{\prime \prime}-2 y^{\prime}+2 y=0$.

The corresponding auxiliary or characteristic equation is $\lambda^{2}-2 \lambda+2=0$. This equation has two imaginary roots:

$$
\begin{equation*}
\lambda=1+i \quad \text { and } \quad \lambda=1-i . \tag{0.5pt}
\end{equation*}
$$

Therefore the general solution of the auxiliary equation is

$$
y(x)=e^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right) .
$$

Step 2 (total: 2 pt): find a particular solution.
We try a polynomial of degree 1 , in other words: try

$$
y_{p}(x)=a x+b
$$

[0.5 pt]
with unknown constants a and b. Notice that

$$
y_{p}^{\prime}(x)=a \quad \text { and } \quad y_{p}^{\prime \prime}(x)=0,
$$

hence

$$
y_{p}^{\prime \prime}-2 y_{p}^{\prime}+2 y_{p}=0-2 a+2(a x+b)=x+2
$$

[0.5 pt]
This leads to the following equations for a and b :

$$
\begin{aligned}
& 2 a=1 \\
& 2 b-2 a=2 .
\end{aligned}
$$

Solve the equations: $a=\frac{1}{2}$ and $b=\frac{3}{2}$, so the particular solution is $y_{p}(x)=\frac{1}{2} x+\frac{3}{2}$.
Step 3 (total: 1 pt): determine the constants c_{1} and c_{2}.
The general solution is

$$
\begin{equation*}
y(x)=e^{x}\left(c_{1} \cos (x)+c_{2} \sin (x)\right)+\frac{1}{2} x+\frac{3}{2} . \tag{1}
\end{equation*}
$$

From $y(0)=0$ follows

$$
0=y(0)=1 \cdot\left(c_{1} \cdot 1+c_{2} \cdot 0\right)+\frac{3}{2},
$$

hence $c_{1}=-\frac{3}{2}$.
[0.5 pt]
Differentiate (1):

$$
y^{\prime}(x)=e^{x}\left(-\frac{3}{2} \cos (x)+c_{2} \sin (x)\right)+e^{x}\left(\frac{3}{2} \sin (x)+c_{2} \cos (x)\right)+\frac{1}{2} .
$$

From $y^{\prime}(0)=-1$ follows

$$
-1=y^{\prime}(0)=1 \cdot\left(-\frac{3}{2} \cdot 1+c_{2} \cdot 0\right)+1 \cdot\left(\frac{3}{2} \cdot 0+c_{2} \cdot 1\right)+\frac{1}{2},
$$

hence $c_{2}=0$.
[0.5 pt]
The solution of the initial value problem is

$$
y(x)=-\frac{3}{2} e^{x} \cos (x)+\frac{1}{2} x+\frac{3}{2} .
$$

