Mathematics A (Euclides) and B1 (Leibniz)

Solutions/correction standard for test Mathematics A + B1, Nov 4, 2013

1.

(a) [1 pt] For example: p: "He wears a white T-shirt" and q: "The T-shirt he is wearing is not green". Then $p \rightarrow q$ is true, but $q \rightarrow p$ is false. Of course there are many more examples [1 pt]

(b) [3 pt] Membership table for $(A \cup B) - C$ and $(A - B) \cup (B - C)$:

A	B	C	$A \cup B$	$(A \cup B) - C$	A - B	B-C	$(A-B) \cup (B-C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	1	1	0	1	1
0	1	1	1	0	0	0	0
1	0	0	1	1	1	0	1
1	0	1	1	0	1	0	1
1	1	0	1	1	0	1	1
1	1	1	1	0	0	0	0

[1.5 pt]

Conclusion:

The fifth and last column are not identical, so the statement is false. **[0.5 pt]** These columns only differ in the sixth row, so in order to find a counterexample, we must take sets A, B and C such there is an element in the intersection $A \cap C$ that is not in B. For example $A = C = \{1\}$ and $B = \emptyset$. Then $(A \cup B) - C = \emptyset$, but $(A - B) \cup (B - C) = \{1\}$. **[1 pt]**

Incorrect table: -0.5 pt for each incorrect column.

If table is not correct but the way the conclusion is deduced from the table is: 0.5 pt.

A counterexample that is deduced from an incorrect table that is not a counterexample for the statement in the exercise: 0 pt (a counterexample must be checked)

(a) [2 pt] Let $m, n \in \mathbb{Z}$ be both odd.

Then there exist $k, l \in \mathbb{Z}$ such that m = 2k + 1 and n = 2l + 1. [0.5 pt] Then mn = (2k + 1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1. [1 pt] So mn can be written as mn = 2s + 1, with $s \in \mathbb{Z}$, and therefore mn is odd. [0.5 pt]

(b) [4 pt] Basis step for n = 1: $1^3 + 2 \cdot 1 = 3$, so the statement is correct for n = 1(take $\ell = 1$).

[0.5 pt]

Induction step:

Let $k \ge 1$ and suppose that: $k^3 + 2k$ is divisible by 3, so $k^3 + 2k = 3\ell$ for some $\ell \in \mathbb{Z}$ (Induction hypothesis: IH). [1 pt]

We must show that IH implies:

 $(k+1)^3 + 2(k+1)$ is divisible by 3. [1 pt]

2.

Well:

$$(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2$$

= $k^3 + 2k + 3(k^2 + k + 1)$. [0.5 pt]

Now IH implies that this is equal to $3\ell + 3(k^2 + k + 1)$. [0.5 pt] Rewriting this last expression yields: $3(\ell + k^2 + k + 1)$ So $(k + 1)^3 + 2(k + 1)$ is divisible by 3. [0.5 pt] Now we obtain from the principle of mathematical induction that for all $n \in \mathbb{N}$: $n^3 + 2n$ is divisible by 3.

(From the proof it must be crystal clear what is supposed [1 pt] and what must be proved [1 pt]. In case of nonsense formulations like "Suppose it is correct FOR ALL n, so it also holds for n + 1": at most 1 pt for the entire exercise)

(a) [1 pt] For each digit there are 10 possibilities. So by the rule of product: there are 10¹² different strings.
 (answer: [0.5 pt], (some) argumentation: [0.5 pt]).

(b) [3 pt] The number of ones must be 6, 7, 8 of 9.

First we determine the number of strings with exactly 3 zeros and exactly 6 ones. Choose 3 digits for the zeros, this can be done in $\binom{12}{3}$ ways. For each choice for the zeros, there are $\binom{9}{6}$ possibilities to determine the digits for the 6 ones and for each choice for the zeros and the ones, there are 8^3 possibilities for the remaining three digits (which cannot be 0 or 1). [1 pt] Therefore, by the rule of product, the number of strings with exactly 3 zeros and exactly 6 ones is: $\binom{12}{3} \cdot \binom{9}{6} \cdot 8^3$. [0.5 pt] Similarly,the number of strings with exactly 3 zeros and exactly 7, 8 or 9 ones is: $\binom{12}{3} \cdot \binom{9}{7} \cdot 8^2$, $\binom{12}{3} \cdot \binom{9}{8} \cdot 8^1$, and $\binom{12}{3} \cdot \binom{9}{9} \cdot 8^0$ respectively. [1 pt]

Therefore the number of strings with 3 zeros and at least 6 ones is equal to:

$$\binom{12}{3} \cdot \binom{9}{6} \cdot 8^3 + \binom{12}{3} \cdot \binom{9}{7} \cdot 8^2 + \binom{12}{3} \cdot \binom{9}{8} \cdot 8 + \binom{12}{3}.$$
 [0.5 pt]

(Just the answer, without any argumentation: **[1.5 pt]**). Note that the answer $\binom{12}{3} \cdot \binom{9}{6} \cdot 9^3$ (choose 6 digits for the ones and take for the remaining three digits any nonzero digit) is wrong.

- 4. (a) [1 pt] The function $f(x) = e^{\sin(x)}$ is not one-to-one:. An answer without motivation (even if it is the correct answer): 0 pt. Provide two numbers a and b with $a \neq b$ and f(a) = f(b), for example a = 0 and $b = \pi$. [1 pt]
 - (b) [2 pt] The range of sin(x) is [-1,1] The function e^x maps this interval to the interval $\left[\frac{1}{e}, e\right]$. [1 pt] In order to conclude this, you need that e^x is an increasing function. If this argument is used: [1 pt].

3.

Note that in fact also the continuity of e^x is required. Since continuity is not part of the curriculum, there is no deduction for not using this argument.

(a) [2 pt]
$$\overrightarrow{RQ} = \langle 0, 2\sqrt{3}, 6 \rangle.$$
 [0.5 pt]

$$\left| \overline{RQ} \right| = \sqrt{0 + 12 + 36} = \sqrt{48} = 4\sqrt{3}.$$
 [1 pt]

The unit vector in the direction of \overrightarrow{RQ} is $\langle 0, \frac{1}{2}, \frac{1}{2}\sqrt{3} \rangle$. [0.5 pt] Note: deduct 0.5 pt if the answer is $\overrightarrow{QR} = \langle 0, -\frac{1}{2}, -\frac{1}{2}\sqrt{3} \rangle$.

(b) [2 pt] Write
$$PQ$$
 and PR as vectors:

$$\mathbf{u} = \overrightarrow{PQ} = \langle 2, \sqrt{3}, 3 \rangle$$
 and $\mathbf{v} = \overrightarrow{PR} = \langle 2, -\sqrt{3}, -3 \rangle$. [0.5 pt]

Calculate the lengths and the dot product of ${\bf u}$ and ${\bf v}$:

$$|\mathbf{u}| = \sqrt{4} + 3 + 9 = 4,$$

$$|\mathbf{v}| = \sqrt{4} + 3 + 9 = 4,$$

$$\mathbf{u} \cdot \mathbf{v} = 4 - 3 - 9 = -8.$$
 [0.5 pt]

If the $\varphi = \angle RPQ$, then

$$\cos \varphi = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} = \frac{-8}{16} = -\frac{1}{2}.$$
 [.5pt]

From this follows:

$$\varphi = \frac{2}{3}\pi.$$
 [.5pt]

(c) [2 pt] Calculate the cross product of \mathbf{u} and \mathbf{v} :

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} 2 & \sqrt{3} \\ 2 & -\sqrt{3} \\ 3 \end{bmatrix} \mathbf{x}_{2}^{2} \mathbf{x}_{-\sqrt{3}}^{\sqrt{3}} = \langle 0, 12, -4\sqrt{3} \rangle.$$
 [1pt]

The surface area of the triangle is

$$\frac{1}{2} |\mathbf{u} \times \mathbf{v}| = \frac{1}{2}\sqrt{192} = 4\sqrt{3}.$$
 [1pt]

6. (a) [2 pt] Calculate z^2 :

$$z^{2} = \left(\sqrt{2+\sqrt{3}} + i\sqrt{2-\sqrt{3}}\right)^{2}$$

= $\left(\sqrt{2+\sqrt{3}}\right)^{2} + \left(i\sqrt{2-\sqrt{3}}\right)^{2} + 2i\sqrt{2+\sqrt{3}}\sqrt{2-\sqrt{3}}$
= $2+\sqrt{3} - (2-\sqrt{3}) + 2i\sqrt{(2+\sqrt{3})(2-\sqrt{3})}$
= $2\sqrt{3} + 2i\sqrt{4-3}$
= $2\sqrt{3} + 2i$,

so $\operatorname{Re}(z^2) = 2\sqrt{3}$ and $\operatorname{Im}(z^2) = 2$. [2 pt] Deduct .5 pt for every error.

5.

(b) [1 pt] Use the result from (a):

$$|z^{2}| = \sqrt{(\operatorname{Re} z^{2})^{2} + (\operatorname{Im} z^{2})^{2}}$$

= $\sqrt{(2\sqrt{3})^{2} + 2^{2}}$
= $\sqrt{12 + 4} = 4.$ [0.5 pt]

For the argument φ of z^2 two methods can be used:

$$\tan \varphi = \frac{\operatorname{Im} z^2}{\operatorname{Re} z^2} = \frac{2}{2\sqrt{3}} = \frac{1}{3}\sqrt{3},$$

and z^2 is in the right-half plane, hence $\varphi = \frac{\pi}{6}$. [0.5 pt] <u>Note</u>: no points are awarded if the argument ' z^2 is in the right-half plane' is missing, since tan is periodic with period π . The same holds if φ is calculated with arctan:

$$\varphi = \arctan\left(\frac{\operatorname{Im} z^2}{\operatorname{Re} z^2}\right) = \dots$$

is wrong.

Alternatively, use a picture:

(c) [1 pt] The number z^6 can be calculated in several ways. The most convenient is to use the result from (b):

$$|z^{6}| = |z^{2}|^{3} = 4^{3} = 64$$

and

$$\arg z^6 = 3 \arg z^2 = 3 \cdot \frac{\pi}{6} = \frac{\pi}{2}.$$
 [0.5 pt]

Therefore

$$z^6 = 64 e^{i\frac{\pi}{2}} = 64i,$$
 [0.5 pt]

and consequently

$$\operatorname{Re}\left(z^{6}
ight)=0$$
 and $\operatorname{Im}\left(z^{6}
ight)=64.$

<u>Note</u>: The real and imaginary part of z^6 need not to be presented in this way. The answer $z^6 = 64i$ will be accepted as correct, but $z^6 = 64 e^{i\frac{\pi}{2}}$ is not.

Other methods (like Newton's binomium) may be used, but calculations might be tedious and are error prone. Nevertheless, if calculations are executed correctly and lead to the right answer (" $z^6 = 64i$ " or " $\operatorname{Re}(z^6) = 0$ and $\operatorname{Im}(z^6) = 64$ "), 1 point is awarded.

7. [2 pt] If $y(x) = \ln(1 + e^x)$, then by the chain rule:

$$y'(x) = \frac{1}{1+e^x} \cdot e^x.$$
 [1 pt]

Notice that $e^{y(x)} = 1 + e^x$, hence

$$y'(x) = \frac{1}{1 + e^x} \cdot e^x$$
$$= \frac{1}{e^{y(x)}} \cdot e^x$$
$$= e^{x - y(x)}.$$
 [1 pt]

8. [3 pt] Rewrite the differential equation in the form y' + a(x)y = b(x):

$$y' + \frac{4}{x}y = \frac{3}{x^2}.$$
 [0.5 pt]

The integrating factor is

$$v(x) = e^{\int a(x) \, \mathrm{d}x} = e^{\int \frac{4}{x} \, \mathrm{d}x} = e^{4\ln x} = x^4.$$
 [0.5 pt]

The general solution is

$$y(x) = \frac{1}{v(x)} \int v(x)b(x) \, \mathrm{d}x = \frac{1}{x^4} \int 3x^2 \, \mathrm{d}x = \frac{x^3 + c}{x^4}.$$
 [1 pt]

Use the initial condition to find *c*:

$$0 = y(1) = \frac{1^3 + c}{1} \Rightarrow c = -1.$$
 [0.5 pt]

Finally, write down the solution:

$$y(x) = \frac{x^3 - 1}{x^4}$$
 or $y(x) = \frac{1}{x} - \frac{1}{x^4}$. [0.5 pt]

9. [4 pt] <u>Step 1</u> (total: 1 pt): solve the homogeneous equation y'' - 2y' + 2y = 0. The corresponding auxiliary or characteristic equation is $\lambda^2 - 2\lambda + 2 = 0$. This equation has two imaginary roots:

$$\lambda = 1 + i$$
 and $\lambda = 1 - i$. [0.5 pt]

Therefore the general solution of the auxiliary equation is

$$y(x) = e^x(c_1\cos(x) + c_2\sin(x)).$$
 [0.5 pt]

Step 2 (total: 2 pt): find a particular solution.

We try a polynomial of degree 1, in other words: try

$$y_p(x) = ax + b$$
 [0.5 pt]

with unknown constants a and b. Notice that

$$y_p'(x) = a$$
 and $y_p''(x) = 0$, [0.5 pt]

hence

$$y_p'' - 2y_p' + 2y_p = 0 - 2a + 2(ax + b) = x + 2$$
 [0.5 pt]

This leads to the following equations for *a* and *b*:

$$2a = 1,$$

 $2b - 2a = 2.$ [0.5 pt]

Solve the equations: $a = \frac{1}{2}$ and $b = \frac{3}{2}$, so the particular solution is $y_p(x) = \frac{1}{2}x + \frac{3}{2}$.

Step 3 (total: 1 pt): determine the constants c_1 and c_2 .

The general solution is

$$y(x) = e^x(c_1\cos(x) + c_2\sin(x)) + \frac{1}{2}x + \frac{3}{2}.$$
(1)

From y(0) = 0 follows

$$0 = y(0) = 1 \cdot (c_1 \cdot 1 + c_2 \cdot 0) + \frac{3}{2};$$

hence $c_1 = -\frac{3}{2}$. Differentiate (1):

$$y'(x) = e^x(-\frac{3}{2}\cos(x) + c_2\sin(x)) + e^x(\frac{3}{2}\sin(x) + c_2\cos(x)) + \frac{1}{2}.$$

From y'(0) = -1 follows

$$-1 = y'(0) = 1 \cdot \left(-\frac{3}{2} \cdot 1 + c_2 \cdot 0\right) + 1 \cdot \left(\frac{3}{2} \cdot 0 + c_2 \cdot 1\right) + \frac{1}{2},$$

hence $c_2 = 0$.

The solution of the initial value problem is

$$y(x) = -\frac{3}{2}e^x\cos(x) + \frac{1}{2}x + \frac{3}{2}.$$

[0.5 pt]

[0.5 pt]