$\begin{array}{lll} \text{Course} & : & \text{Mathematics } \beta \text{ II} \\ \text{Date} & : & \text{January 13th 2017} \end{array}$

Time : 13:45-15:45

Please provide motivation for all your answers and calculations. The use of electronic devices is not allowed.

1. Let

$$f(x) = \begin{cases} \frac{x^2}{3 + \sin(1/x)} & \text{for } x \neq 0\\ 0 & \text{for } x = 0 \end{cases}$$

(a) Determine f'(x) for $x \neq 0$.

(b) Use the definition of derivative to obtain that f'(0) = 0.

(c) Calculate $f'(\frac{1}{2k\pi}), k \in \mathbb{N}$.

(d) Is f'(x) continuous in 0?

2. (a) Formulate the Mean Value Theorem (MVT).

(b) Let $f:[0,1]\to\mathbb{R}$ differentiable.

Assume that for all $x \in (a, b)$ we have that f'(x) = 0. Let $0 < c_1 < c_2 < 1$. Use MVT to show that $f(c_1) = f(c_2)$ and conclude that f(x) is constant on [a, b].

3. Calculate, if the limit exists

$$\lim_{(x,y)\to(0,0)}\frac{x\tan y}{x^2+y^2}.$$

4. Let S_n be given by

$$S_n = \sum_{k=1}^n \frac{2k-1}{n^2} \frac{n}{k}.$$

We want to interpret S_n as a Riemann sum of a function f(x) on the interval (0,1] with $\Delta x_k = \frac{2k-1}{n^2}$.

- (a) For n=6 depict the corresponding partition of [0,1] and determine $x_0,x_1,x_2,x_3,x_4,x_5,x_6$.
- (b) For general n determine the corresponding partition $P_n = \{x_0, x_1, \dots, x_{n-1}, x_n\}$ of the interval [0, 1].
- (c) Determine $f:(0,1]\to\mathbb{R}$ such that S_n is a Riemann sum for f(x) on (0,1].
- (d) Now calculate

$$\lim_{n\to\infty} S_n.$$

- 5. Calculate the average value of $f(x) = x^8 \ln(x^3)$ on the interval $[1, \sqrt[3]{2}]$.
- 6. Let $f(x) = xe^{x^2}$.
 - (a) Give the Taylor Series expansion of f(x) about 0 up to and including the term of degree five.
 - (b) Determine the radius of convergence of the Taylor series of f(x) about 0.

Points: Ex 1, a: 3, b: 4, c: 3, d: 5, Ex 2: a: 4, b: 5, Ex 3: 8, Ex 4: a: 3, 4: 4, d:4. Ex 5: 8, Ex 6: a: 5, b: 4.