Mathematics B2: Newton

Solution to test of November 29, 2013

1. (a) Split limit in left and right
$\left[\frac{1}{2} \mathrm{pt}\right]$
Now $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x+2 \sqrt{x}=0 \quad\left[\frac{1}{2} \mathrm{pt}\right]$
and $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{x}{x^{2}+1}=0 \quad\left[\frac{1}{2} \mathrm{pt}\right]$
Hence $\lim _{x \rightarrow 0} f(x)=0 \quad\left[\frac{1}{2} \mathrm{pt}\right]$
Since $f(0)=0, f$ is continuous at 0 . [1 pt]
(b) $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}(x+2 \sqrt{x})=\infty \quad\left[\frac{1}{2} \mathrm{pt}\right]$
$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{x}{x^{2}+1}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}}{1+\frac{1}{x^{2}}}$
$=0$ (correct answer, without motivation)
(c) Formulate the procedure for finding extrema explicitly, 1 point divided as:

From (a) we know that f is continuous on $[-2,2]$
The candidates for absolute extrema are the points x where:

* $f^{\prime}(x)$ does not exist
* $f^{\prime}(x)=0$
* $x=-2$ and $x=2$

Calculations: f^{\prime} does not exist at 0 (no proof required)
$f^{\prime}(x)=0$, split in:
$x>0: f(x)=x+2 \sqrt{x}$, so $f^{\prime}(x)=1+\frac{1}{\sqrt{x}} \neq 0$
$x<0: f(x)=\frac{x}{x^{2}+1}$, so $f^{\prime}(x)=\frac{x^{2}+1-2 x^{2}}{\left(x^{2}+1\right)^{2}}$
Hence $f^{\prime}(x)=0 \leftrightarrow x^{2}=1 \leftrightarrow x=-1(x<0) \quad\left[\frac{1}{2} \mathrm{pt}\right]$
Now $f(-2)=-\frac{2}{5}, f(-1)=-\frac{1}{2}, f(0)=0, f(2)=2+2 \sqrt{2}, \quad\left[\frac{1}{2} \mathrm{pt}\right]$
so $-\frac{1}{2}$ is the absolute minimum, $2+2 \sqrt{2}$ the absolute maximum. $\quad\left[\frac{1}{2} \mathrm{pt}\right]$
2. $\lim _{x \rightarrow 0}\left(1+\frac{x}{2}\right)^{\frac{1}{x}}=\lim _{x \rightarrow 0} \exp \left(\frac{\ln \left(1+\frac{x}{2}\right)}{x}\right)$
[1 pt]
First calculate $\lim _{x \rightarrow 0} \frac{\ln \left(1+\frac{x}{2}\right)}{x}$
Type $\frac{0}{0}$, hence L'Hôpital can be applied
$\left[\frac{1}{2} \mathrm{pt}\right]$
Hence $\lim _{x \rightarrow 0} \frac{\ln \left(1+\frac{x}{2}\right)}{x}=\lim _{x \rightarrow 0} \frac{\frac{\frac{1}{2}}{1+\frac{x}{2}}}{1}=\frac{1}{2}$
It follows that $\lim _{x \rightarrow 0}\left(1+\frac{x}{2}\right)^{\frac{1}{x}}=e^{\frac{1}{2}}$
3. (a) Use polar coordinates: $x=r \cos \theta, y=r \sin \theta$
leads to $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{r \rightarrow 0^{+}} \frac{r^{2} \cos ^{2}(\theta) r \sin (\theta)}{r^{2}}$
$=\lim _{r \rightarrow 0^{+}} r \cos ^{2}(\theta) \sin (\theta)=0$,
some motivation that the result is independent of θ
Since $f(0,0)=0, f$ is continuous at $(0,0)$.
(b) Equation of the tangent plane (either implicit in solution, or explicit):
$z-z_{0}=f_{x}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right) \cdot\left(y-y_{0}\right)$
[1 pt]
Here: $x_{0}=1, y_{0}=1, z_{0}=\frac{1}{2}$
and:
$f_{x}(x, y)=\frac{2 x y\left(x^{2}+y^{2}\right)-2 x\left(x^{2} y\right)}{\left(x^{2}+y^{2}\right)^{2}}$
$f_{y}(x, y)=\frac{x^{2}\left(x^{2}+y^{2}\right)-2 y\left(x^{2} y\right)}{\left(x^{2}+y^{2}\right)^{2}}$
Hence ${ }^{*}$) becomes:
$z-\frac{1}{2}=\frac{1}{2}(x-1)\left(\right.$ or $\left.z=\frac{1}{2} x\right)$

