Mathematics B2: Newton

Solution to test of November 29, 2013

1. (a) Split limit in left and right

Now $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x + 2\sqrt{x} = 0$ [1/2 pt]

 $\left[\frac{1}{2} \text{ pt}\right]$

and
$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{x}{x^2 + 1} = 0$$
 [$\frac{1}{2}$ pt]

Hence
$$\lim_{x \to 0} f(x) = 0$$
 [$\frac{1}{2}$ pt]

Since
$$f(0) = 0$$
, f is continuous at 0. [1 pt]

(b)
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (x + 2\sqrt{x}) = \infty$$
 [$\frac{1}{2}$ pt]

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{x^2 + 1} = \lim_{x \to -\infty} \frac{\overline{x}}{1 + \frac{1}{x^2}}$$
[1 pt]

$$= 0 \text{ (correct answer, without motivation)} \qquad \qquad [\frac{1}{2} \text{ pt}]$$

(c) Formulate the procedure for finding extrema explicitly, 1 point divided as: From (a) we know that f is continuous on [-2, 2] $[\frac{1}{2} \text{ pt}]$ The candidates for absolute extrema are the points x where:

$$\begin{cases} * f'(x) \text{ does not exist} \\ * f'(x) = 0 \\ * x = -2 \text{ and } x = 2 \end{cases}$$

$$\left\{ \begin{bmatrix} \frac{1}{2} & \text{pt} \end{bmatrix} \right\}$$

Calculations: f' does not exist at 0 (no proof required) $\left[\frac{1}{2} \text{ pt}\right]$

$$f'(x) = 0$$
, split in:
 $x > 0: f(x) = x + 2\sqrt{x}$, so $f'(x) = 1 + \frac{1}{\sqrt{x}} \neq 0$ $[\frac{1}{2} \text{ pt}]$

$$x < 0: f(x) = \frac{x}{x^2 + 1}$$
, so $f'(x) = \frac{x^2 + 1 - 2x^2}{(x^2 + 1)^2}$ $[\frac{1}{2} \text{ pt}]$

Hence
$$f'(x) = 0 \leftrightarrow x^2 = 1 \leftrightarrow x = -1(x < 0)$$
 $\left[\frac{1}{2} \text{ pt}\right]$

Now
$$f(-2) = -\frac{2}{5}, f(-1) = -\frac{1}{2}, f(0) = 0, f(2) = 2 + 2\sqrt{2},$$
 $[\frac{1}{2} \text{ pt}]$

so
$$-\frac{1}{2}$$
 is the absolute minimum, $2 + 2\sqrt{2}$ the absolute maximum. $\left[\frac{1}{2} \text{ pt}\right]$

2.
$$\lim_{x \to 0} (1 + \frac{x}{2})^{\frac{1}{x}} = \lim_{x \to 0} \exp(\frac{\ln(1 + \frac{x}{2})}{x})$$

First calculate
$$\lim_{x \to 0} \frac{\ln(1 + \frac{x}{2})}{x}$$
 [1 pt]

Type
$$\frac{0}{0}$$
, hence L'Hôpital can be applied $\begin{bmatrix} \frac{1}{2} & \text{pt} \end{bmatrix}$

Hence
$$\lim_{x \to 0} \frac{\ln(1 + \frac{x}{2})}{x} = \lim_{x \to 0} \frac{\frac{\overline{2}}{1 + \frac{x}{2}}}{1} = \frac{1}{2}$$
 [1 pt]

It follows that
$$\lim_{x \to 0} (1 + \frac{x}{2})^{\frac{1}{x}} = e^{\frac{1}{2}}$$
 $[\frac{1}{2} \text{ pt}]$

3. (a) Use polar coordinates: $x = r \cos \theta, y = r \sin \theta$ $[\frac{1}{2} \text{ pt}]$ $r^2 \cos^2(\theta) r \sin(\theta)$

leads to
$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{r\to 0^+} \frac{r \cos(\theta)r \sin(\theta)}{r^2}$$
 [1/2] pt]

$$= \lim_{r \to 0^+} r \cos^2(\theta) \sin(\theta) = 0, \qquad \qquad [\frac{1}{2} \text{ pt}]$$

some motivation that the result is independent of θ $\left[\frac{1}{2} \text{ pt}\right]$

Since
$$f(0,0) = 0$$
, f is continuous at $(0,0)$. [1 pt]

(b) Equation of the tangent plane (either implicit in solution, or explicit):

$$z - z_0 = f_x(x_0, y_0) \cdot (x - x_0) + f_y(x_0, y_0) \cdot (y - y_0)$$
 (*) [1 pt]

Here:
$$x_0 = 1, y_0 = 1, z_0 = \frac{1}{2}$$
 $[\frac{1}{2} \text{ pt}]$

and:

$$f_x(x,y) = \frac{2xy(x^2 + y^2) - 2x(x^2y)}{(x^2 + y^2)^2} \qquad [\frac{1}{2} \text{ pt}]$$

$$f_y(x,y) = \frac{x^2(x^2+y^2) - 2y(x^2y)}{(x^2+y^2)^2}$$
 [1/2] pt]

Hence (*) becomes:

$$z - \frac{1}{2} = \frac{1}{2}(x - 1) \text{ (or } z = \frac{1}{2}x)$$
 [$\frac{1}{2}$ pt]