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1 Measures, Integrals, and Foundations of Prob-
ability Theory

1.1 Measure theory and Integration
Definition 1. A family F of subsets of €2 is called a c—algebra if:
1. Q¢ Fand P e F
2. Ac F=>A°c F
3. A1, Ay, € F U A, EF
Example 1. Some examples of o-algebra’s:
e {0,Q} is a trivial o-algebra.
e The power set 22, which is the collection of all subsets of A is a o-algebra.

Example 2. Given a family of sets A, there is a smallest o-algebra which
contains A. Notation: o(A), called the o-algebra generated by A.

Example 3. The Borel o-algebra of R?, (notation B(R?)) is the o-algebra
generated by all open sets in R¢.

Example 4. Let f: Q — R be a function. Let {f € B} = {w € Q: f(w) € B}.
The collection O(f) := {{f € B} : B € B(R)}} is a o-algebra in Q. It is called
the o-algebra generated by f.

Let (2, F) be a measurable space. f : @ — R is called measurable/Borel
measurable if VB € B it holds that {f € B} € F.

e Sums, product, etc. of measurable functions are measurable.

e Limits, countable suprema and infima are measurable.

Definition 2. A mapping: p: f — [0, 00] is called a measure if

1. p(@) =0



2. V disjoint Ay, Ag, - € F then p (U A,) = > 07 u(Ay)

Caratheodory extension Theorem:

Definition 3. For a given set €2, we may define a ring R as a subset of the
powerset of € which has the following properties

eleR
e Forall A,B<€ Rwehave AUB € R
e For all A,B € R wehave A\B€eR

This theorem states that if there exists a measure p on a ring R then there exists
a measure u* on the sigma algebra of that ring such that p* is an extension of

o (That is, p*|r = )

Dynkin uniqueness of measure

Definition 4. Let 2 be a nonempty set, and let D be a collection of subsets of
Q. Then D is a A-system if

1. Qe D
2. f A,BeDand AC B, then B\ A€ D.

3. If Ay, Ag, As, ... is a sequence of subsets in D and A, C A, for all
n>1then J,_, A, €D

Equivalently, D is a w-system if

1. Qe D
2. If A€ D then A € D.

3. If Ay, A, As, ... is a sequence of subsets in D and A; N A; = (0 for all
i#jthen|J;2 A, €D

An important fact is that a A-system which is also a 7-system (i.e. closed under
finite intersection) is a o-algebra.

Theorem 1 (Dynkin’s 7 — X theorem). If P is a w-system and D is a \-system
with P C D then o(P) C D. In other words the o-algebra generated by P is
contained in D.

Completion of measure There are certain technical benefits to having the
following property in a measure space (X, F,u) called completion: if N € F
satisfies (V) = 0, then every subset of N is measurable and then of course has
measure Zzero.
It turns out that this can always be arranged by a simple enlargement of the
o-algebra. Let

F ={F € X : there exists B,N € F and F C N such that u(N) =0 and A = BUF}



1.2 Lebesgue measure

There exists a measure on (R, B(R?)) which satisfies p([a1,b1) X - - - X [aq, bg) =

d
Hn:l(bn - an)'
Integration: f =", ¢;1a, then [ fdu =13, c;u(A;).
The power of Lebesgue-integration lies in the fact that one can prove conver-
gence theorems such as monotone convergence and dominated convergence.

Theorem 2 (Monotone convergence theorem). Let f,, be nonnegative mea-
surable functions, ans assume f, < fh4+1 almost everywhere, for each n. Let
f=1lm, o fn. This limit exists at least almost everywhere. Then.

/ fdu = Tim fodp
n—oo

Theorem 3 (Dominated convergence theorem). Let f,, be measurable functions,
and assume the limit f = lim,_,o fn exists almost everywhere. Assume there
exists a function g > 0 such that |f,| < g almost everywhere for each n and
[ gdu < 0. Then

/ fdu= Tim fody
n—oo

LP-spaces: For a Borel-measurable function f : Q@ — Rlet || f|[» = ([ | f]Pdp) v
Let £P(Q, F,pu) = {f : Q@ — R measurable : ||f||, < co}. Then LP is a vector
space. ||.||r» is not a norm because ||f|jzr = 0# f=0. Let f ~gif f=g
almost everywhere, which is an equivalence relation. Then LP = LP\ ~ becomes
a normed space. Moreover LP is a complete space.

Holder’s inequality: ||f - gllss < ||fllzo - lgl|e for 1 +1 =1

Theorem 4 (Fubini’s theorem). Let f € L'(p ® v). Then f, € L'(v) for
p-almost every x, f, € L*(u) for v-almost every y, g € L*(n) and h € L*(v).
Iterated integration as follows, is valid:

| rdwen = [ L[ s wtan faae)
- [{[ stwmian b via

1.3 Probability spaces
We call (2, F, P) a probability space if P(2) = 1.
Definition 5. X : Q2 — R is called a random variable if it is measurable.

Definition 6. o-algebras Fi, Fs,... are independent if

P(ﬂAZ) =[[P@:) vAieFr Vi<n VneN
i=1 i=1

Definition 7. X, X5,...,: © — R are independent if 0(X1),0(X2),..., are
independent.



Image measure: X : Q — R%, ux(B) = P(X € B), B € B(R%)
Expectation: E[X] = [, XdP

Theorem 5. Xi,..., X, : Q@ — R are independent <= the distribution of
(X1,...,Xpn) is p=px, X -+ X ux,
Theorem 6. If X and Y are independent, then E[XY] E[X]E[Y] and
XelLrYelLV then L+ % =1
Proof. ux(B) = P(X € B),uy(B) = P(Y € B) then
B0 EY) = [ [ opdus @y )
= / zydpx x py (z,y)
Fubini
= E[XY]
independence
O

Definition 8. Almost surely (a.s.) means with probability 1

Definition 9. Let {X,,} be a sequence of random variables and X a random
variable, all real valued.

1. X,, = X almost surely if
P{w clim X, (w) = X(w)} =1

n— oo
2. X,, = X in probability if for every € > 0
lim P{w: |X,(w)—X(w)|>€}=0
n—oo

3. Xp—=>XinLPforl <p<ooif
lim E[|X,(w) — X(w)[P] =0

n—oo
4. X,, = X in distribution (also called weakly) if
lim P(X, <z)=P(X <=z

n—oo

for each = at which F'(x) is continuous.

Theorem 7 (Theorem 1.21). Let {X,,} and X be real-valued random variables
on a common probability space.

1. If X;, = X almost surely or in LP for some 1 < p < oo, then X,, —» X in
probability.

2. If X,, — X in probability, then X,, — X weakly.

3. If X;, = X in probability, then there exists a subsequence X,, such that
Xy, = X almost surely.

4. Suppose X, — X in probability. Then X,, — X in L' if and only if {X,,}
is uniformly integrable.



1.4

Conditional Expectations

Example 5. Let (Q, F, P) be a probability space. Let z1,...,%m, 2, ..., 2, € R
be distinct. Now let X : Q@ — {z1,...,2m} Z : @ = {z1,...,2,}. Recall:
P(X = 0;|Z = 2;) & PEZ0072%) qnd B[X|Z = 2] = S 0 P(X = 24| Z =

zj) =

P(Z:ZJ)

1
P(Z=z;) f{Z:Z]‘} Xdp.

A possible definition of Y = E[X[Z] couldbe Y : Q = R, Y =377 Vjliz—. 3,
where Y; = E [X|Z = zj].

How to extend this to general X7 Let A = 0(Z)

Observation 1: Y is constant on sets {Z = z;} thus Y is A-measurable.
Observation 2: [YdP = y; - P(Z = z;) = f{Z:Zj}XdP. Thus VG € G :

J,YdP = [, XdP

Definition 10. Let (Q, F, P) be a probability space. Let X € L'(P) and let
A C F be a sub-c-algebra.
We say that Y : Q — R is the conditional expectation of X given A if:

1.

2.

Y is A-measurable.

YelL'(P)andVAe A [,YdP = [, zdP

Notation: Y (w) = E[X]|A] (w) or E [X|A]

Note that E [E [X|A]] = E [X]

Theorem 8 (Uniqueness). If Y and Y are both conditional expectations of X
gwen A then Y =Y a.s.

Proof. Let AY =Y —Y. Then AY is A-measurable and VA € A : J4AYdP =0
Let Ay = {AY > 0} and Ay = {AY < 0}. Then E[|AY]] = [, AYdP —

J4, AYdP =0—0=0. Thus |AY| =0 as., thus Y =Y a.s. O

Definition 11. In this case Y and Y are called versions of E [X|A]

Theorem 9. Properties of conditional expectation Let (2, F, P) be a probability
space. Let X,Y € LY(P), A, B C F be sub-o-fields. Then:

1.

D

E[E[X]A]] =E[X]

(Linearity) E[aX + BY|A] = oF [X|A] + BE[Y|A], o, B € R
(Positivity) If X > Y then E[X|A] > E[Y]A].

If X is A-measurable then E[X|A] = X

(Taking out what is known). If X is A-measurable and XY € L'(P), then
E[XY|A] = XE[Y|A]

. (Independence) If X and A are independent, then E[X|A] = E [X]
. (Tower property) If A C B, then E [E [X|B] | A] = E[X|A] and also E [E [X|.A] |B] =

E[X|A] by 4.

. If AC B and E [X|B] is A-measurable, then E[X|B] = E[X|A].



9. (Jensen’s inequality) Let f : (a,b) — R be convez, —co < a < b << oo.

Assume that a < X < b.
E [f(X)[A]

Proof. Simple exercises: 1,2,4,6,8
Good exercises: 3,5,7
Too difficult: 9,10

a.s.

and f(X) € LY(P) Then: f(E[X|A] <



2 Stochastic Processes

Let (Q,F,P) be a probability space. From now on we will assume that F is
complete, i.e. if N € A satisfies u(N) = 0, then every subset of N is measurable
(and then of course has measure zero).

Definition 12. A filtration on (0, F, P) is a family of o-fields (F;);>0 such
that Fs C F; C F,V0<s <t < oo.

Definition 13. A process X : R x 2 = R if B,,, x F-measurable.
Notation: (X;)¢>0, (t,w) = X;(w) or X (t,w)

Example 6. (X;);>0 astock price. A possible filtration FX = o(X; : s € [0,1]),
our knowledge at time t.

Convention: F; contains all null sets of F otherwise replace F; by F; = {B €
F:3A € F st. P(AAB) = 0} where AAB is the symmetric difference.

Definition 14. (X;);>¢ is called adapted to (Fi)i>0 if V& > 0: w — Xi(w) is
JFi-measurable.

Definition 15. (X,);>¢ is called progressively measurable if VT' > 0 X restricted
to [0, T] x ) is B[O,T]

Observation: X progressively measurable = X is adapted.

Definition 16. (X;);>0,(Y:)i>0 are called modifications or versions if ¥t >
0,P(X,=Y;) = L.
(Xt)i>0, (Y2)i>0 are called indistinguishable if P(X, =Y;,Vt > 0) = 1.

Theorem 10. Assume X is adapted to (F;)i>0 and X is left or right-continuous,
then X is progressively measurable.

Definition 17. X is called cadlag if it has right-continuous paths and Vw € Q :
Vit > 0: limgys Xs(w) exists.
caglad left-continuous and right limits exists.

Theorem 11. Assume X,Y are right-continuous. Assume: S C Ry is dense
and countable. IfVt € S: P(Xy; =Y;) =1, then X and Y are indistinguishable.
Similar for left-continuous if 0 € S.

Proof. Let Vs € S: V, = {X, = Ys}. Then P(V;) = 1. Let Qg = [),cg Vs, then
P(Qp) = 1.
Claim: Vw € Qp,Vt > 0 X; =Y; thus P(X; =Y;,Vt > 0) = P(Qp) = 1. O

Definition 18. 7 : Q — [0,00] is called a stopping time if ¥Vt € (0,00) : {7 <
t} e F

Example 7. First time a stock price is > 100.
First time a stock price is lower than the price a week before.

Theorem 12. X adapted and continuous, H € R is closed. Define: tp(w) =
inf{r > 0: X;(w) € H}, then Ty is a stopping time.



2.1 Quadratic variation

We start with bounded variation from section 1.1.9.

Given F : [a,b] — R, define: Vg (t) := sup{d>_\_, |F(S;) — F(S;—1)] :a = Sy <
S1 < ---< S, =b}. F has bounded variation if Vi (b) < oco.

Observation: Vy(0) =0, V is non-decreasing.

Notation: BV][a, b] is space of functions of bounded variation.

Theorem 13. F € BV]a,b] <= F is the difference of two nondecreasing func-
tions: F = Fy — F5.

Lebesgue-Stieltjes integral: F' increasing on [a,b] then Af(u,v] = F(v) —
F(u) extends to a positive Borel measure Ap on [a,b], which is called the
Lebesgue-Stieltjes measure.

Notation: f(mb] gdAp or f(a’b] g(z)dF(z) for the Lebesgue-Stieltjes integral.
Careful if F has a jump in ¢, then Ap({t}) = F(t) — F(t—).

An idea for quadratic variation is > (F(S;) — F(S,_1))?, but we want more.
Given 7(t) = {0 = ¢o,...,tm = ¢} a mesh on [0,¢] and process Y. Let
VRr(t) = 05" [V (@) — Y ()]

We say that V2 converges in probability to process Z if Ve > 036 > 0 : Vt >
0,V7(t), mesh(m) < § = P(|VZ(n(t)) — Zi| > €) < e

Notation: [Y]; = limpyesh(r)—0 VZ(m(t)) in probability.

Definition 19. [Y] = ([Y]:):>0 is called the quadratic variation process of Y if
e the limit exists.
e There exists a version of [Y] s.t. Vw : t = [Y];(w) is nondecreasing.

Definition 20. [X,Y] = 1[X + Y] — 1[X — Y] if the right hand side exists.

lim Z(Xti+1 - Xti)(}/tHl - )/tl) = [X’ Y]t

mesh—0

K2

where we use the fact that +(a + b)? — (a — b)* = ab
Also: [X,Y], = 3([X + Y], — [X] - [V])

Theorem 14. If X,Y are cadlag and [X,Y] exists then [X,Y] has a cadlag
modification and A[X,Y ), = (AX)(AY:). Here AZy = Zy — Zy— for Z cadlag.

N|—=
o=

Theorem 15. |[X,Y]; — [X,Y]s] < ([X]: — [X]s)2([Y]: — [Y]s)

Theorem 16 (Kunita-Watanabe inequality). Assume that [X], [Y], [X,Y] exist
and are right-continuous. Then for bounded and measurable functions G, H :
0, T] x Q=R

o G(t,w)H(t,w)d[X,Y]:(w)

1/2 1/2
< (/ G(t,W)Qd[X]t(w)> ( H(tW)Qd[Y]t(w))
[0,7) [0,T]




Remark: by a Radon-Nikodym derivative this result also holds iwth

G(t,w)H (t,w)|A[x,y)(w) |dt
[0,7]

1/2 1/2
< (/ G(t7w)2d[X]t(W)> ( H(t,w)Qd[Y]t(w)>
[0,7] [0,T]




3 Brownian motion

Definition 21. Let (2, F, P) be a probability space with filtration (F;)¢>0.
A process (By);>0 is called a one-dimensional Brownian motion w.r.t. (Fi)i>o0
if:

1. For almost all w €  : t — B(w) is continuous.

2. V0 < s <'t, By — By is independent of F; and has a normal distribution
with E[B; — B;] =0 and E [(B; — Bs)?| =t —s

If additionally 3. By = 0 a.s. then B is called a standard Brownian motion.

Theorem 17. Assume (Q, F, P) is rich enough. Then there exists a process
(Bi)t>o such that (By)i>o is a standard Brownian Motion w.r.t. (Fi)i>o0

Two pages about the construction of Brownian Motion - Not relevant
I think.

Theorem 18. Let (By)i>0 be a Brownian Motion w.r.t. (Fi)i>0. Then Vs <t
we have that E [B,|F,] = B, and E [Bf — t|F,] = B? — s

Proof. We start with noticing that E [B; — Bs|Fs] = E[B; — Bs] = 0. There-
fore E[By|F,] = E[B; — By + Bs|F,] = B,. And E[(By — B,)*|Fs| =t —s
thus E [B — 2B, B, + B2|F,| = t — s and E[B,B,|F,] = B,E[B|F,] = B2
Conclusion: E [B}|F,| —BZ=1t—s O
Theorem 19. [B]; = t, moreover for all partitions m we have that
m(m)—1 2
E Z (Btyy, — Bi)* —t < 2tmesh()
i=0

Thus Z;i(g)_l(BtHl — By,)? =t in L?(p) and in P as mesh(r) — 0.

Theorem 20. Almost surely for all T > 0, the path t — By(w) is not a member
of BV[0,T].

10



4 Uniform integrability and Martingales

4.1 Uniform integrability

Definition 22. A collection C' of random variables is called uniformly integrable
(UI) if

lim sup/ |Z|dP =0
{12]>r}

T—00 zZeC
Example 8. If X € L!, then C = {X} is UL
Example 9. If X € L' then C = {Z: Q - R:|Z| < |X] a.s. } is UL

Theorem 21. Let p > 1. If C C LP and K := supycc ||Z||1r < o0 then C is
Ul

Example 10. Q = [0,1], P is Lebesgue-measure. X,, = nl n > 1. Then

C ={X, :n €N} isnot UL
Indeed, given 7 > 0 choose n > r. Then f{IXn\>r} | X,|dP = [|X,|dP = 1.
Thus sup ycc f{IXn\>7"} | X, |dP =1 for all r > 0.

0. %)’

Theorem 22. Let (Q, F, P) be a probability space. Let X € L'(P) and define
C:={E[X|G]: G C F}. Then C is uniformly integrable.

Theorem 23 (Bounded convergence theorem). Assume X,, — X in probability.
Assume IK > 0:Vn € N,Vw € Q|X,,(w)| < K, then X,, = X in L'

Theorem 24. Let X,,, X € L.

X, — X in probability.

X, = X in L' < .
{X,, :n>1}is UL

4.2 Martingales

Definition 23. (M;);>o is called a martingale w.r.t. (Fi)e>o if
1. M, € LY(P)
2. (M) is (F)¢-adapted.
3. V0 < s <t:E[M]Fs] = M, almost surely

Submartingale: Replace 2. by E[M|Fs] > M,
Supermartingale: Replace 2. by E[M|Fs] < M,

Note that E [M;|Fy] > M, <= VA € F,E[14M,] > E[14M,]
M is called square integrable if Vt > 0 : E [M}] < oo. The discrete definition is
analogue.

Theorem 25. If (M;):>o is a martingale and ¢ is convex and ¥t > 0 : ¢p(M;) €
L' then ¢(M;) is a submartingale.

Proof. Jensen’s inequality for s < t: E[¢(M;)|Fs] > &(E [M,|Fs]) = ¢(Ms). O

11



4.3 Optional stopping

We extend the times used in the definition of martingales to stopping times.
Notation: z Ay = min{z,y} and =z V y = max{z,y}.
First the discrete case:

Theorem 26 (Lemma 3.4). Let M be a submartingale. Assume that T and o
are stopping times whose values lie in an ordered countable set {s1 < s3 < s3 <
...} U{oo} where s, — co. Then for any T < oo,

E [MT/\T|]:U] = Ma/\‘r/\T

Theorem 27 (Lemma 3.5). Let M be a submartingale with right-continuous
paths and T < co. Let p be a stopping time with P(p < T) = 1. Then:

E[M,] < 2E [M;] — E M)
so M, e L'.

Theorem 28. Let M be a right-continuous submartingale. Let o, T be stopping
times, T < co. Then E[M ar|Fo] > Moarar. Note the integrability by lemma
3.5

Theorem 29 (Corollary 3.7). Suppose (M;)i>o is a right-continuous (sub)martingale
and 7 is a stopping time. Then M7 = (Mya-)t>0 i a right-continuous (sub)martingale.
If M is an L? martingale, then M7™ is as well.

Theorem 30 (Corollary 3.8). Suppose M is a right-continuous submartingale.
Let {o(u) : u > 0} be nondecreasing, [0, 00)-values process such that o(u) is a
bounded stopping time for each u. Then {My(,) : v > 0} is a submartingale
with respect to the filtration {Fy () : u > 0}

12



5 Further investigating martingales

5.1 Inequalities and limits
Towards Doob’s inequality:

Theorem 31 (Lemma 3.9). Let M be a submartingale, 0 < T < oo and H a
finite subset of [0, T]. Then for all v >0

S 1) < ol +
P({rtré&g( My >r}) <r 'E[M]]

and

P(ip M, < r}) < 7748 [MF] - B [Mo))

Theorem 32 (Doobs mean). Let M be a right-continuous submartingale and
0<T < oo. Then for all v > 0:

P({sup M; > r}) <r~'E [M}]
teH

and

P({inf M, <r}) <r~!(E[M]] ~ E[M)])

Theorem 33 (Doob’s Inequality). Let M be a nonnegative, right-continuous
submartingale and 0 < T < oo. Then for 1 < p < oo

[ o 7] < (-25) B0

0<t<T -

14

P( sup MtZC') §%
0<t<T Cr

Example 11. For example if (V) is a right-continuous martingale, we can
apply Doob’s inequality on M; = |N¢|.

Most important cases of martingale convergence: M; is a martingale with
SUP; < oo B [|My]] < 00 then My = limy—,o0 M; exists almost surely and Mo, € L.
Convergence need not be in L!'. This holds if and only if {M; : t > 0} is
uniformly integrable.

5.2 Local martingales and semimartingales

Notation: For process X, 7 a stopping time we denote with X7 = Xya,. X7 is
called the stopped process.

Definition 24. M; is called a local martingale if

1. M, is (F;) adapted.

13



2. There exists a sequence of stopping times (7x)3>, such that 71 < 7 <
..., Tk = 00 a.s. and Vk : M™ is a martingale.

(%) s called a localizing sequence for M.
M is called a local square integrable martingale if 1., 2. and M™ € L? for all k.

Remark: If M has continuous paths, we can take 7, = inf{¢t > 0: |M;| > k} as
a localizing sequence. Moreover |M/*| < k

Definition 25. A cadlag process Y is called a semimartingale if there exists a
local martingale M with My = 0 and there exists a finite variation process V'
with Vo = 0 such that Y; = M; +V, + Y, for all ¢ > 0.

Continuous semimartingale: if additionally M,V are continuous.

5.3 Quadratic variation for Semimartingales

Remember that [B]; = t for a Brownian Motion and [B,Y], = 0 if B,Y are
independent Brownian Motions.

Theorem 34 (Theorem 3.26). Let M be a right-continuous local martingale,
then [M| exists and there is a version of [M] which is:

e real-valued (so no o)
o right-continuous
e nondecreasing
e adapted
o [M]p=0
If M is an L? — martingale then lim e sh(r)—0 Z:i(g)_l | M

is in L* and E[[M],] = E [M? — M§]
If M is continuous, then [M] has a version, which is continuous.

= M,,[* — [M],

i1

Theorem 35 (Lemma 3.27). Let M be a right-continuous local martingale.
Let T be a stopping time. Then [MT] = [M]7. This means that for all t > 0 :
[MT] =T = [M]7p

Theorem 36 (Theorem 3.28). If M is a right-continuous (local) L?-martingale
then M? — [M] is as well.

If M, N are right-continuous (local) L?-martingales then [M, N] also exists and
[MT,N]=[M",N"] =[M,N]".
Moreover M N — [M, N] is also a (local) L?-martingale again.

Theorem 37 (Corallary 3.31). Let M be a cadlag local martingale, V' a cadlag
FV process My = Vo =0, and Y =Yy + M + V the cadlag semimartingale.
Then [Y] exists and is given by:

(Y] = [M]e +2[M, V] + [V];
Furthermore, [YT] = [Y]7

14



6 Spaces of martingales and Stochastic Integra-
tion

6.1 Spaces of martingales

From now on only continuous L2-martingales M§ and sometimes local Mgloc.
Remind from analysis: Cla,b] with |[f||ec = sup,cjq [f(¢)] is complete. Fur-

1
thermore L?(p) is complete. || X||r2 = (E [|X[?])2
Possible norm on martingales on [0, 7] would be ||Mr||r2. But note that for all
t€ 0, TIM;ll» < [[Mrllzz, even more: [|supyepo.r) IMelllz2 < 20| M2

Thus (M(™),,>1 sequence such that M%n) is Cauchy in L?(p) implies Ve > 0

E (1M - M2

€2

P sup |Mt(n) - Mt(m)\ >e| <
t€[0,T]

by Doob’s inequality. This is called (M (”))nzl is uniformly Cauchy in probabil-
ity. After some calculations we find that ||Mr||r2 could become oo for T' — oc.
Therefore we define

1M pg o= Y 27 (LA (I Mil[12)
k=1

but there are many other equivalent choices possible.
This is not a norm because |[aM|[ o # |a| - [|M||pg but das, (M, N) = |[M —
Nl mg is a metric.

Theorem 38 (Theorem 3.40). Let (F;) be complete. Then MS is a complete
metric space under the metric da,.

Theorem 39. If M) — M in MS, then:
VT < 00,Ve > 0: lim P( sup |M™ — M| >e) =0
N0 40,71

This is called uniform convergence on compact intervals.
Furthermore there exists a subsequence (M ™)) and Qo C Q such that P(Qp) =
1 and for each w € Qy, VT < oo

lim sup | M (w) — My(w)| =0
n—oo 0<t<T

6.2 Stochastic integration of predictable processes

We only consider f XdY with Y continuous to simplify the presentation in the
lectures.

Definition 26. p is the smallest o-algebra which contains (s,t] x F with 0 <
s<t<oo,FeFsand {0} x Fy with Fy € Fy

p is called predictable o-algebra

(s,t] x F is called predictable rectangle.
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Theorem 40 (Lemma 5.1). A process is p-measurable if and only if it can be
approximated by (left)-continuous adapted processes

Proof. We proof that a left-continuous adapted process X is p-measurable.

ReWrite Xn(t,(U) = XO(UJ)].{O} =+ Ezoi() Xi2—n1[1'2—n7(1'+1)2—n] (t)

Now {X,, € B} = {0} x {Xo € BFUU;2, (127", (i + 1)27"] x {X;2-» € B}. Thus
—_—

€p €p
{X,, € B} € p, thus X,, is p-measurable.
Also by left continuity X,, — X on [0,00) X © thus X is p-measurable. O

Remarks: Not all right-continuous adapted processes are predictable.
X :[0,00) = R with the Borel-measure is predictable.

Doleans measure: iy, on p Let M € M then Doleans measure is defined
as:

e (A) = /2 /[O’Oo) 14 (t,w)d[M],(w)dP(w)

The meaning of this formula is that first, for each fixed w, the function t —
14(t,w) is integrated by the Lebesgue-Stieltjes measure Ajpz(. of the function
t — [M];(w). The resulting integral is a measurable function of w, which is then
averaged over the probability space.

Convention: Appzw)({0}) = 0.

Note: pa([0,7] x Q) = E[[M], — [M]o] = E [M}?] — E [MZ] < oo thus py is a

o-finite measure.

Example 12. Assume (B;); is a standard Brownian Motion and pp = m ® p
where m is the Lebesgue measure. Indeed: pp(B) = [, f[o 00) 14 (t,w)dtdP(w) =
m® P(A)

Definition 27. For X : Ry x © — R predictable:

1
2
|X||M,,T—</ |X|2duM> —&|[ |X<t>|2d[M1t]
[0,T]x (0,77

Lo = L3(M, P) is the set of all predictable X such that VI' < oo : || X||,,, , < 00
A metric on L5 is defined as:

dﬁz(X7 Y) = ||X - Y||£2
with

1022 = > 27 P LA X s )
k=1

Here we identify processes which are pp; almost everywhere equal.

Example 13. Let (B:);>0 be a Brownian Motion and X a predictable process.
Then we have that X € L if and only if

VT < oo: X € L*((0,T] x Q)

16



Example 14. Let M € M§. If VT < oo3Cr,Vw,t|X;(w)] < COr and X
predictable, then X € L(M, P).
Indeed,

E
(0,77

/[0 § |X<s>|2d[M]s] <E

= CZE[[M]r — [M]o]
= CIE [M} — M§] < o0

C%d[M]S]

6.3 Construction of the stochastic integral
Our goal is to define (X - M), := f(o y XdM for X € Ly(M, P)
Step 1 X € S, a simple predictable process.

Step 2 Prove L2-isometry for X - M

E[[(X - M)rP] = [ Xl 7 for X €5,

Step 3 Approximation/density argument for X € Lo(M, P). Here complete-
ness of M$ plays a crucial role.

Step 4 Localization: no integrability conditions on 2

Step 5 Extension to continuous semimartingales.

Definition 28. A process X of the form:

{th) = (W) 10y (1) + 00 € (@) Lty 00 (F)

with 0 =t9 <t; <--- <t, and §; is F;,-measurable.

is called a simple predictable process, notation X € So

17



7 Stochastic Integration

7.1 Step 1,2 and 3
Definition 29. A process X of the form:
{Xt (@) = 0(w) 10y (1) + X5 €(@) Lt it ()
with 0 =19 <t <--- <t, and §; is F;,-measurable.
is called a simple predictable process, notation X € Sy
Theorem 41 (Lemma 5.6). X of the form is indeed predictable

Proof. By linearity it suffices to consider 1,3 with £ F-measurable. Now ap-
proximate £ by simple random variables to get predictable rectangles. Similarly
for 51{0} O]

Definition 30. For X a simple predictable process and M € MS we define
the stochastic integral to be:

(X M)o(w) = 3 6(w) (Mary ne(6) — Myng ()
=1

Remarks: The value at zero of X and M are irrelevant. Adding a Fy-measurable
random variable to M does not change the stochastic integral.
Two other notations: fot XdM and I(X) for X - M.

Theorem 42 (Lemma 5.8). 1. The stochastic integral does not depend on
its representation.

2. The integral is linear.

Theorem 43. Let X € Sy, M € MY, then X - M € MS and the following
L2-isometries hold:

(X - M)ellp2(0,p) = [IX|L2((0,6) %9, 0a0) (1)
1X - M| g = [IX]le, (2)
Now we continue with step 3:

Theorem 44 (Lemma 5.10). For any X € Lq there exists a sequence (Xp)n>1 €
Sy such that lim, o0 || X — Xpllz, =0

Definition 31. Take M € M$ and X € Lo(M). Choose (X,,)n>1 € So such
that || X — X,||z, = 0. Now we define the stochastic integral for X to be

(X - M), = lim (X, - M),

n—oo

Existence of limit. (X,,),>1 exists by lemma 5.10. Also:
[ X - M = Xy - MHMzc = [[(Xn — Xm) - M||M2C

= HXn _XmHﬁz
< HXn _XHﬁQ + HX_XmHE2 =0

18



Thus (X, - M),>1 is a Cauchy sequence in M§ hence converges by the com-
pleteness of MQC Thus lim,, o X, - M exists in Mg
Uniqueness: Take Z,, € Sy such that Z,, — X in L£5. Then

HXn'M_Zn'MHMzC = [[(Xn _Zn)'M||M§
= [|Xn = Znllc,
<X = Xlleo + {120 = Xl = 0

Thus (Z,, - M),>1 has the same limit as (X,, - M),>1 in M. Thus (X - M), is
unique up to indistinguishability.

Theorem 45 (Proposition 5.12). Let M € MY, X € Lo(M) then ¥t < oo
X - Mllzz@p) = X220 x20 and [1X - Mllpgg = X lizy000

In particular, if X =Y, ppr-almost surely, then X - M and Y - M are indistin-
guishable.

Proof. Just take limits in lemma 5.9. Als use the reverse triangle inequality:

H8ll = 111l < llé =l

Properties of the stochastic integral

Theorem 46 (Proposition 5.14). This proposition gives some properties
of the stochastic integral:

1. Linearity:
(aX +BB)-M=a(X -M)+ Y M)

2. For any 0 <u < v,
/ 1,y XdM = XdM
(0,1] (0,0At]

and

/ L) XdM = (X - M)ypt — (X - M)unt = / XdM
(0,¢]

(unt,uAt]

3. For s <t we have a condition form of the isometry:

B[O M) = (XM IE] =B | |

Theorem 47 (Proposition 5.19). Let M, N € My, a, 8 € R, and X € Lo(M, P)N
L2(N,P). Then X € Lo(aM + BN, P) and

X -(aM+pN)=a(X -M)+pB(X -N)
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8 Stochastic Integration

8.1 Step 4 and 5

Last time we considered M € MY, the continuous L?-martingale and (X - M) €
M for X € L2(M).
Here X € Lo(M) <= VT < 00X € L?((0,T) x Q,dpnr)

Theorem 48 (Proposition 5.16).
(Lo, X) M) =(X-M)rps = (X -M"),
Today we only want to assume;
o M€ MQ’IOCC
e X € L%((0,7T),[M]) almost surely for all T < oo

but the problem is that there is no integrability in 2.

Example 15. X; = eBt4, M = X - B should exist and what is M? And what
about (Y - M),?

Recall that M € Mgloc <> there exists a localizing sequence o} 1 0o such that
Mor e M§

Definition 32. Let M € MS .. We say X € L(M, P) if X is predictable and
there exists stopping times 0 < 7 < 75 < ... such that

1. P(hmk_mo Tk = OO) =1
2. M™ € MY for all k
3. 19,7 X € L(M™, P for all k.

In this case (73) is called a localizing sequence for (X - M).
Remark: 1o -, is predictable, because it is adapted and left-continuous.

Now the idea is to define (X - M) locally:
Yk = (Lpo,r X - M™)
and let £k — oo. Here k is an index.

Theorem 49 (Lemma 5.22). M € MQC:locf X predictable. If 7,0 are stopping
times such that M, M™ € MS and 10,0 X € L2(M7), 190X € Lo(MT).
Define :

Zt = / 1(U’U]XdMO-, Wt = / 1(O’T]XdMT
(0,4] (0,t]
then Z°"™ = WINT where we mean that the two processes are indistinguishable.

By lemma 5.22 we have that Vk, m € N almost surely and V¢ > 0

k . m
)/t/\Tk/\Tm, - Y;/\Tk/\Tm (3)

Now let Qp = {w € Q : limp_0o = 00,Vk,m € N,Vt > 0 (3) holds. }. Then
P(Q0) = 1 by countability of N x N.
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Definition 33. Let M € MglOC,X € L(M,P) and (71) a localizing sequence
for (X, M).

Now define the stochastic integral Yw € Qo, (X - M)¢(w) = Y (w), t < 7(w) and
X -M =0 forwé¢Q

Remarks:

e The stochastic integral is well defined since 7 (w) — oo and if ¢ < 75 (w) A
Tm(w), then

}/tk (W) = }/tlj\Tk/\Tm (w) = Y;T/?\TT;C/\Tm (LU) = }/:tm (w)

o (X -M)* = (X Mypr, = YE, = (Y*)[* which is in M§. Thus
X-Me Mg,loc with localizing sequence 7y,

o If we would use another localizing sequence (o;);>1 for (X, M), this would
yield the same (X - M) by lemma 5.22

Example 16 (Example 5.26). Let B be a Brownian Motion, then

T
X € L(B, P) <= X predictable and VT < 0o, a.s. / | X (t,w)[?dt < oo
0

Theorem 50 (Corollary 5.29). Let M € M. and X continuous and adapted
then X € L(M, P) and hence X - M is well-defined

Proof. Define oy, := inf{t > 0;|X;| > k} and 7, := inf{t > 0: |M;| > k}. Now
ok N\ T 1s a localizing sequence for (X - M) O

Standard properties of L2-integral extend to the localized setting:

e Linearity continues to hold

e Interchanging stopping times, if X € L(M),Y € L(N), 7 a stopping time.
If almost surely X;(w) = Yi(w) and Mi(w) = Ny(w) for ¢t < 7(w) then
(X : M)t/\T = (Y : N)t/\T

Theorem 51 (Proposition 5.32). Let M € MS, . and X be continuous and
predictable. Now assume that for allm € N 0 < 7§ < 7 < ... are stopping

times such that almost surely 6,, = sup; 77| — 7" — 0 if n — oc.

Define Ry (t) = Y02 X (77) (M (7", At) — M (7] At)), then Ry, — X - M uni-
form, in probability on compact time intervals.

8.2 Semimartingale integrators

Let Y be a continuous semimartingale, Y; = Yy + M; + V; with My = V5 = 0.
Technical condition: there exist stopping times o, such that Vn € N: 1( s )X
is bounded, where X is not relevant.

21



Definition 34. Let Y be a semimartingale and let X be a predictable process
for which the technical condition is satisfied. Then we define the integral of X
with respect to Y as the process

Xdy = XdM + XdA,(ds)
(0.1 (0.1 0.1]
—_——

Stochastic integral in./\/lg'.lOC Stieltjes integral for fixed w

Thus X - Y is a semimartingale again.

By the next lemma the decomposition of Y is unique, thus the stochastic integral
is well defined. The well-definedness follows from the uniqueness of decomposi-
tion for continuous semimartingales Y; = Yy + My + V; = Yy + Ny + W;. Thus
M; — Ny € M§,,. = Wi — V. By the next result we show that M; = N; and
Wy =V,

Theorem 52 (Lemma). If M € Mgloc has finite variation, then M = M,

Rest of 5.3 is selfstudy Proposition 5.36 is not needed because of the above
lemma. Non-continuous case is to complicated for this lecture.
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9 It0’s lemma

9.1 Quadratic Covariation

The lecture starts with repeating some information about quadratic covariation.
I have not reposted the old results, but here are the new results:
When the Quadratic Covariation (QCV) exists it behaves like an innerproduct

[aX + pY, Z] = o[ X, Z] + BY, Z]

Theorem 53 (Lemma 5.54). M,,, M, N,,, N are L?-martingales and 0 < T <
0o. Furthermore suppose that M, (T) — M(T) and N, (T) — N(T) in L?.
Then E [supg<;<r |[Mn, Nple — [M, N]¢|]] = 0 as n — oo

Theorem 54. Let M,N € Ms ., G € L(M,P), H € L(N,P).
Then [G-M,H - N); = f(o 4 GsHgd[M, N,

9.2 Change of integrator/Substitution rule

Theorem 55 (Proposition 5.58). Let M € Ms j,.,G € L(M,P). We already
know that N :== G- M € Mg ,.. Let H € L(N,P). Then HG € L(M,P) and
H-N=(HG) - M

Theorem 56 (Corollary 5.59). Let Y be a cadlag semimartingale and H be
predictable satisfying (5.66): there exists a sequence (on) with o, T 0o a.s.
such that 1(g, 5, H is bounded for each n.
We know that X = H -Y is a cadlag semimartingale. Let G be predictable
satisfying (5.66), then [GdX = [ GHAY

Theorem 57 (Theorem 5.62). Let Y, Z be cadlag semimartingales. G, H pre-
dictable satisfying (5.66). Then [G-Y,H - Z]; = f(o 1) GsHd]Y, Z];

Theorem 58 (Proposition 5.63). Let Y, Z be continuous semimartingales and
G an adapted, continuous process. Let m = {0 =1ty <t; <ty <...,t; T oo} a
partition of [0, 00).

Then Ry(n) =Y .0, Gy, (Yioone=Ye,ne)(Zt, oo ne—Zi, ne) converges to fot G:dY, Z]s
as mesh(m) — 0

This is what we call convergence in probability uniformly on compact intervals.

Theorem 59 (Theorem 5.60). Let Y, Z be continuous semimartingales, then
[Y, Z] exists as continuous adapted F'V process and:

1. Y, Z)y = Y1 Z, — Yo Zy —fot Y.dZ, —fg Z.dY, which is the stochastic version
of integration by parts.

2. YZ 1is continuous semimartingale.

3. For continuwous H [} Hyd(Y Z)s = [y H,YsdZy+ [, HyZ,dYy+ [y Hyd]Y, Z],
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9.3 Itd’s lemma
Theorem 60 (Theorem 6.1.0). Let 0 < T < oo and :
1. f € C*(R), i.e. has a continuous 2nd derivative.

2.'Y is a continuous semimartingale with quadratic variation [Y]

Then,

f(Yt)Zf(Yo)Jr/O f’(Y;>dYS+%/O FUY)AY],  W0<t<T

Both sides are continuous processes and’ =' means that both sides are indistin-

guishable on [0,T], i.e., I, P(Qo) = 1 such that Yw € Qg the equality holds
forall0<t<T.

Generalizations of theorem 6.1

2% Y is cadlag instead of continuous. Then the integrals become: fot f(Ys—)dYs+
z fot f(Ys-)d[Y]s. An extra term/sum involving the jumps is needed:

S0 {F) = f(Yao) = F (Yo )AY, = LYo )(AYL)?}
s€(0,t]

where the sum converges absolutely for a.e. w. All processes are now
cadlag instead of continuous.

1* f € C%*(D) where D is open in R. We now need that Y'[0,7] C D
3* Note that 1* and 2* combined is not enough for the theorem.
Remark 6.2: f(Y;) is a continuous semimartingale.

Theorem 61 (Corollary 6.3). (b) If Y is of bounded variation on [0,T] and
continuous then f(Y;) = f(Yo) + fot f'(Ys)dYs. This is the regular, non-
stochastic integration theory.

(¢) IfY; = Yo+ By, where B is a standard Brownian Motion independent of Yy
then

t t
FB) = 1)+ [ £+ Bas,+ 4 [ 500+ Bojas

9.4 Itd’s formula in time and space

Theorem 62 (Theorem 6.1.1). Let 0 < T < oo, f € CH2([0,T],R) i.e. f(t,x)
is continuous differentiable in 1st variable and twice continuous differentiable in
the 2nd varbiable. FurthermoreY is a continuous semimartingale with quadratic
variation [Y]. Then:

Y (8) = F(0.Y(0))+ / fols, Y (s)) ds+ / fo(s, Y (5))dY (5)+ / Fra(s, Y (5))dIY ]
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We now generalize this theory to the d-dimension vector valued variant.

Theorem 63 (Theorem 6.5). Let 0 < T < oo, f € CL2([0,T], D) where D is
open in R, Furthermore Y is R*-valued and a continuous semimartingale such

that Y ([0, T]) C D almost surely. Then:

t d t
f(t,Y(t))=f(0,Y(0))+/0 fi(s,Y(5))ds + > [ fa(s,Y () dY (s)

i=1"0

iy / Fovay (5, Y (5)) Y, Y;](s)

1<i,5<d
Short hand notation:
d
df (Y (1) = fit, Y(£)dt + > fo, (£, Y (£)dY (t)
i=1

+§ S frn, (6 Y (£)dA[Y:, Y1)

1<i,j<d

We have the special case that Y (¢t) = B(t) = (B1(t), ..., Ba4(t)), the d—dimensional
Brownian Motion. Notation:

o feCH2(([0,T] x RY)
o Vof =(fuy--- fu,) the gradient vector
o A, f =V, -V,f= 2?21 fa:.2;» the Laplacian
Theorem 64 (Corollary 6.7). Let B(t) be d-dimensional Brownian Motion,

feChH2([0,T] x RY)
Then

f(t, B(t)) = £(0, B(0)) +/O (fe(s, B(s) + 38:f(s,B(s))) ds

+ / V. f(s, B(s))dB(s)
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10 Ito’s formula

The continuous semimartingale class is preserved after transformation of f(¢, Y (¢).

This may not be the case if we Work with martmgales

For f € Cl( ) such that F(z) = [ f(y)dy we have that fo B,)dB, =
By) — 5 fo s)ds , which is the path wise interpretation.

The short hand notatlon is df(By) = f'(B)dB; + & f"(By;)dt. This notation

has no meaning, only through the integrated version.

Application of It6 formula: Beautiful and useful results can be derived from

special choices of f.

Preservation of Martingale property
Suppose that Y (t) is continuous martingale and f € C2([0,T] x R).
Tto: f(t,Y (t)) = F0.Y(0)+[y (fe + & faw) (5, Y (8))A[Y |5+ [ fu(s, Y (5))dY (s).

If 2nd term on the right hand side is zero, then it is at least a local martin-
gale. When is fot fu(s,Y(s))dY (s) a martingale? One sufficient condition is for
example, Y is continuous L2-martingale and f,(s,Y (s)) € L2(M, P).

Theorem 65 (Lemma 6.9). Suppose f € CH2(Ry x R) and f; + %fm =0.
Let By be a one-dimensional standard Brownian Motion. Then f(t, Bt) is lo-

cal L?-martingale. If further fOTE [f2(t,By)] dt < oo then f(t,By) is an L*-
martingale on [0, T)]

This lemma can be extended to the d-dimensional Brownian Motion.
When is a local martingale a martingale?

Exercise 3.7 X a nonnegative local martingale with E[X)] < oco. X is a
martingale <= E[X;] = E[X,] for all ¢t >0

Exercise 3.8 M is a right-continous local martingale and M;* € L'(P) then
M is a martingale

Corollary A continuous local martingale which is bounded a.s. is a martingale.
Example 17. Some applications of Lemma 6.9:
o f(t,x) =12% —t = B? —t is a martingale.

i f(t CE) = eax—§a K then faf - afvfacx - azf and ft - —§C¥2f = _%fxx

1
aBi—%a’t ; :
and therefore e*”*~2% * is a martingale.

Example 18 (Exit time of Brownian Motion with drift.). We have X; = ut +
oB; with p € Rjoc € Rjo 2 0. 7 = inf{t > 0: 2y = aorxz; = b} where
a<0,b>0.

What is P(X, = b)?

Propositions 6.11 and 6.12 are about recurrent/transience properties of Brown-
ian Motion.

e One dimensional BM is (point) recurrent.
e Two dimensional BM is not point recurrent, but neighbourhood recurrent.

e d-dimensional BM (d > 3) is transient.
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Theorem 66 (Theorem 6.14). Let M be a continuous R¥-valued local mar-
tingale and X (t) = M(t) — M(0) such that X(0) = 0. Then X is a standard
Brownian Motion relative to Fy iff [x;, X;](t) = 0; ;t in particual X is indepen-
dent of Fy

10.1 SDEs

Recall ordinary differential equations (ODE). For example it may be of the form
= f(t,x), equivalently dz(t) = f(¢, z(¢))dt.

SDE: The stochastic variant will involve in the simplest case a dB; term. For
example, dX; = p(t, X3)dt + o(t, X;)dBs.

We have seen earlier this type of equations as short hand notation for Ito for-
mula. But there given X; = f(¢, B;) we derived this short hand notation for-
mula.

Now we have to do the reverse. Given this formula’/SDE, does there exist a
process X; which satisfy this equation? Recall that this short-hand notation
must be interpreted through integral form. That is still the case.

Definition 35. Let (2, F, P) be a complete filtered probability space, and (B)
is a standard Brownian motion defined on it. Suppose p, o : [0,7] x R — R are
measurable and 7 is an Fp-measurable random variable. A stochastic process
(Xt),t € [0,T] defined on (2, F, P) is called a strong solution of the SDE:
dX; = p(t, Xy)dt 4+ o(t, X¢)dB; with initial condition Xy = 7 if the following
assertions are true:

1. X, is continuous and F;-adapted
2. fOT p(t, Xo)|dt + fOT lo(t, X¢)|?dt < oo almost surely.
3. Foreacht € [0,T]: Xy = 77+f0t u(s,Xs)ds—l—fot o (s, Xs)dBg almost surely.

Note that condition 2. assures that the integrals in 3. are well defined.

So given an SDE questions are about existence of a solution, if it exists, then
uniqueness of it; and not unimportant, the properties of the solutions.

In an SDE: dX; = p(t, X¢)dt + o(t, X¢)dBy, p is called drift/instantaneous
growth term and o2 is called the diffusion coefficient/instantaneous variance.

Example 19 (7.3). Consider the SDE dX; = uX;dt + o X;dB; with Xy = ¢ €
R.

Let’s see if X; = f(¢, Bt) can be a solution to such SDE.

Applying Itd formula to f(¢, B;) we have,

so if there exists f such that

ft"‘%fmx:/“fandfngf
then X; = f:(t, B;) will be a solution.
fo=0f = f(t,x) = g(t)e’™ where g is some function of ¢ only. Plugging this
into the 1st expression yields: %(—(tt))f + U;f = pf. So if there exists a g(t) such

that %’ = %02 — p then it will do.
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’ l 2
But & = p— j0% =g = ce*=27)% where ¢ is the integration constant. So

1 1
flt,x) = e 37)1H9T  Now consider X, = f(t, By) = cePm 37O B g

not difficult (using Itd) that all conditions in the definition of a solution are
satisfied.
To make sure that initial condition is satisfied one needs ¢ = xg. hence the

_1l.2
complete solution is X; = zgel# ™27 )t+oBt

If Xy was a random variable 7 (which must be Fp-measurable and hence inde-
pendent of (By)>o) then X; = ne(“_%gz)HUB"

This is one solution, are there any other solutions? That would be answered
with no via a general result

Properties

E[X;] = E[n] e"* which grows exponentially assuming that E ] # 0, but X; =

By
net((‘“?”QHUTT. The strong law of large numbers says that % — 0 a.s. thus
if (u— 30?) <0 then Xy — 0 a.s. as t — oo.

Here is another example of a sequence of random variables which converges to
0 a.s. but is expectations converge to oo.

Example 20 (7.2 (Ornstein Uhlenbeck process).
dXt = —aXtdt + O'dBt X() = Xo

Show that a solution of the form X; = f(¢, B;) does not exist.
So we need to use a different technique. Multiply both sides by the integrating
factor Z; = e**. Then apply It6 formula to (ZX); to obtain the solution:

t
X; = xpe” —|—/ ge (=94 B,
0
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11 Applications of Ito’s formula
Brownian Bridge(Example 7.4) For fixed 0 <t < 1:

Xi
1-t¢

dXt = — dt + dBt with Xo =29

has the solution X; = xg + e7 % + (1 — ) fg —dB,. X, is defined on [0,1)

and X; — 0 as ¢t T 1. X is a Brownian motion conditioned at the end (¢t = 1)
to be also zero.
X; = B; — tB; is also a Brownian bridge

Theorem 67 (Theorem 7.8). Consider the SDE on the given space (2, F, P):

dX; = b(t,Xt)dt + O'(t,Xt)dBt,t S [O,T],Xo = 5 € Fo
Suppose the coefficients b and o satisfy the Lipschitz condition:

[b(t, ) = b(t,y)|* +|o(t.2) = o(t,y)]* < Lz —y?
for some constant L > 0 and the spatial Growth condition

[b(t, @) + |o(t, 2)* < L(1 + [a]*)

Then there exists a continuous, adapted process X which is a solution of the
SDE. Furthermore, the process X is unique up to indistinguishability, i.e. if
X and Yy are both solutions of the SDE then P(X; =Y; for allt € [0,T]) =1

Some useful results are listed below:

Theorem 68 (Gronwall’s Lemma (Lemma A.20)). Let g be an integrable Borel
function on [a,b] and f a non-decreasing function on [a,b]. Suppose there is a
constant ¢ such that

t

o(t) < F(t) + ¢ / g(s)ds Vi€ [a,)

a

Then g(t) < f(t)ectt—®)

Theorem 69 (Doob’s maximum inequality). For square integrable continuous
martingale M, and 0 <T < oo

| sup 104 < 4B [Mr ]
0<t<T

Theorem 70 (Theorem 7.12). Suppose &,n are Fo-measurable random vari-
ables. Assume b and o satisfy the Lipschitz condition. Suppose X and Y are
solutions to the same SDE with coefficients b and o but with possibly different

initial values & and n, respectively. Then X and Y are indistinguishable, on the
event {£ =n}, i.e., P((X; = Yi)lemyy = 0,Vt € [0,7]) = 1

Now a very long proof of this theorem followed, which I think is not relevant.
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Theorem 71 (Theorem 7.14). Suppose b and o are continuous functions of
(t,z) satisfying the growth and Lipschitz conditions.

Let X be the strong solution of the SDE with coefficients b and o (and with
Fo-measurable € as initial value) on the filtered probability space (Q, F, P) with
B a Brownian motion on it.

Let X be the strong solution corresponding to the SDE with same coefficients b
and o but corresponding to (Q,f”, ]5), B,E.

Suppose € = £ in distribution.

Then the processes X and X have the same probability distribution. ILe., for
any measurable set A of Cral0,T], P(X € A) = P(X € A)

In the absence of the growth and Lipschitz conditions one may not always be
able to find a (strong) solution defined on the given probability space (2, F, P)
It is however, sometimes possible to define/construct

1. Another (filtered) probability space (Q*, F*, P*)
2. An SBM B; on the new filtered space
3. An Fy-measurable £* with probability distribution same as that of £

4. A continuous adapted process X; w.r.t. the new filtered space such that

T T
/ |b(t, X;)|dt +/ lo(t, X})|?dt < oo
0 0
and
t t
X;—¢* +/ b(s,X;)d+/ o(s, X*)dB?
0 0
Then (Q*, F*, P*,&*, (B)), (X)) is called the weak solution of the SDE

dXt = b(t, Xt)dt + O'(t7 Xt)dBt
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12 Girsanov’s theorem

The main question of this section is: ”Can a stochastic process with drift be
viewed as one without drift? Or be transformed into one?”

t t t
Xy :/ 0sdB; Y: :/ usds+/ 0sdB;
0 0 0

Because X; is a martingale, it is easier to analyze then Y;!

Monte Carlo Integration

The Riemann sum is given by fo z)de ~ 237" | f(x;) for z; = =L

Monte Carlo integration is the same concept but now random variables are used
to approximate the integral: fol fla)de ~ 237" | f(X;) for X; ~ Unif[0, 1].
Now the Strong Law of Large Numbers yields that if X;’s are i.i.d. with finite
expectation p, then 237"  X; 272, E[X] almost surely. Therefore we can
approximate E [f(z)] by drawing large samples X7, ..., X,, from the distribution
of X and considering the sum 1 3" | f(X;)

[ r@p@)s =Bl ~ 2 Y100, X~ p(o)

In theory this is a very nice idea, but in practice it doesn’t work for most cases.
Let’s see for example the case that we are interested in P(X > 30) for X ~
N(0,1). Then we can approximate this probability by P(X > 30) = E[f(z)]
for f(x) = 1(30,00) S0 that we have:

1
P(X > 30) = ~ Z 10.00)  Xi~ N(0,1)

If we define D to be the number of draws before the first hit (z; > 30), then
E[D] > 101, So in practice this approximation is quite useless.

Importance Sampling
For this problem importance sampling has been invented. By importance sam-
pling we convert the problem so we can sample from more easy distributions:

[t~ [ 1 E do = [ gla)gta)ds

EP [£(X)] = E? [¢(X)] = E9 [f(X)zgg]

In order to apply importance sampling fruitfully we need the ability to draw

sample from density ¢(z), the ability to calculate % and ¢(x) > 0 whenever

p(z) > 0 (or equivalently ¢(z) = 0 < p(z) = 0)

If we get back to our previous example, for p ~ N(0,1); ¢ ~ N(u,1) such that
1 1

p(x)/q(x) = e H 3" and P(X >30)~ 135", |:1{Xi>30}e_“Xi+2”2], where

X; ~ N(u,1). So choosing a suitable value for x improves the approximation.
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Change of Measure

So if we have the same random variable, but we want a different probability
distribution? In that we case we define them on different probability measures.
Consider 2 = R equipped with the Borel o-algebra B and a random variable
X :Q — R given by X (w) = w.

Consider probability measures on (2, B), given by:

e P ((a,b))=(bA1)VO—(anl)VO
o Py((a,b]) = ®(b) — ®(a)
Under P, X ~ U(0,1) and under P», X ~ N(0,1)
Now consider a probability space (Q, F, P) and a random variable X defined

1
on it such that X ~ N(0,1) under P. For some p € R, let Z = e“X_§“2, then
Z >0 and E [Z] = 1. Define a new measure @ on (2, F by Q(A) =E [147] for
A e F. Now @ is a probability measure and under @, X ~ N(u,1).

Theorem 72 (Girsanov Theorem). Suppose (Bi) is a d-dimensional Brownian
Motion defined on the complete filtered probability space (Q, F, P),0 < T < o0 is

fized and H is an adapted measurable R?-valued process such that fOT |H(t)]2dt <
oo almost surely under P.

Let Z, = Z,(H) = exp {fot H(s)dB(s) — L [ |H(s)|2ds}.

o Assume that {Z;,t € [0,T|} is martingale. (Equivalent assumption: E[Z7]
EP[Z]=1.)

e Define the probability measure Q = Qr on Fr as dQ = ZpdP
e Define the process W (t) = B(t) — B(0) — fot H(s)ds

Then {W (t),t € [0,T]} is a d-dimensional Brownian Motion on the probability
space (Q, Fr, Q) w.r.t. the filtration {]:t}te[o,T]

Remark 1: M, = fg H(s)dBgs is a continuous local martingale. Then It6 formula

says that Z, = 1 + fot ZdM, =1+ fot Z.H.dB, such that Z, is a continuous
local martingale.

Remark 2: Zr > 0 = @ is a positive measure and Z; is martingale = E” [Z7] =
EF [Zy] = 1 hence Q is a probability measure.

A Useful Observation

For t € R4, define Q; on (2, F;) as dQ: = Z;dP. Suppose that Z; is a martin-
gale. Then the family of measure {Q;} satisfy certain consistency properties:
Let s<tand Ae F, C F

Qi(A) =EF [142,] = EF [EF W4 Z,|F]]
EP [14E” [Z,|F,]] = E” [14Z,]
= Qs (A)
Example 21 (Application 1). Let B; be a standard Brownian Motion; a <

0,14 € R and o : first time B, hits the (space-time) line a — put. What is the
probability distribution of ¢?
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e Define X; = B;+put. Theno =inf{t > 0: By = a—ut} =inf{t > 0; X; =
a}

e Use Girsanov’s theorem with H (s) = —u such that Z, = e~ #Bt=1°t/2 and
note that Z; is indeed a martingale. Now Q;(A) = EF [14Z;]. such that
{X;,0 < s <t} is a standard Brownian Motion under ;.

e Since Z; > 0, it holds that P(4) = E? [142; '], for A € F [dQ; =
ZydP < dP = Z;'dQ,]

Zt_l _ elu.Bt—‘,-p,zt/Q _ e,uXt—,uzt/Z

. -1
Plo>t)=P <Og;f<th > a> =E° {1{infogsgtxs>a}2t }

_ mwQ X, —u’t/2
=E |:1{inf0§5§tX3>a}€u e /:|

= ¢ Ht/2EQ [1{

2
— e Mt/2RP —nbBi =
e E I{SUPogsgt M,<—a}® where M, OS;;}; By

e The joint distribution of (By, My) is known.

Theorem 73 (Theorem 8.13). Suppose H is adapted, measurable with fOT |H(t)]2dt <
oo almost surely under P. The process Z;—exp {fot H(s)dB(s) — 3 Ot |H(s)|2ds}

(which is a positive local martingale, and hence a supermartingale) is martingale
under any of the following conditions:

e H(t) is non-random

e ((H(t)) and (B;) are mutually independent processes.

o {H(t),t €[0,T]} is bounded

. fOT |H(s)|?ds < C < oo almost surely

1

e Novikov conditon: E [62 I H(S)st} < o0
Theorem 74 (Theorem 8.17). Let 0 < T < oo, b : [0,T] x RY — R¢ Borel
measurable and B; a d-dimensional standard Brownian Motion. Consider the

SDE:

dXt = b(t,Xt)dt + dBt with XO ~ UV

If b is bounded, then the SDE has a weak solution for any initial distribution v
on RY
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