Stochastic Differential Equations Summary

Romke Rozendaal 4094255

June 5, 2015

1 Measures, Integrals, and Foundations of Probability Theory

1.1 Measure theory and Integration

Definition 1. A family \mathcal{F} of subsets of Ω is called a σ-algebra if:

1. $\Omega \in \mathcal{F}$ and $\emptyset \in \mathcal{F}$
2. $A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}$
3. $A_{1}, A_{2}, \cdots \in \mathcal{F} \rightarrow \cup_{n=1}^{\infty} A_{n} \in \mathcal{F}$

Example 1. Some examples of σ-algebra's:

- $\{\emptyset, \Omega\}$ is a trivial σ-algebra
- The power set 2^{Ω}, which is the collection of all subsets of A is a σ-algebra.

Example 2. Given a family of sets A, there is a smallest σ-algebra which contains A. Notation: $\sigma(A)$, called the σ-algebra generated by A.

Example 3. The Borel σ-algebra of \mathbb{R}^{d}, (notation $\mathcal{B}\left(\mathbb{R}^{d}\right)$) is the σ-algebra generated by all open sets in \mathbb{R}^{d}.

Example 4. Let $f: \Omega \rightarrow \mathbb{R}$ be a function. Let $\{f \in B\}=\{\omega \in \Omega: f(\omega) \in B\}$. The collection $\mathcal{O}(f):=\{\{f \in B\}: B \in \mathcal{B}(\mathbb{R})\}\}$ is a σ-algebra in Ω. It is called the σ-algebra generated by f.

Let (Ω, \mathcal{F}) be a measurable space. $f: \Omega \rightarrow \mathbb{R}$ is called measurable/Borel measurable if $\forall B \in \mathcal{B}$ it holds that $\{f \in B\} \in \mathcal{F}$.

- Sums, product, etc. of measurable functions are measurable.
- Limits, countable suprema and infima are measurable.

Definition 2. A mapping: $\mu: f \rightarrow[0, \infty]$ is called a measure if

1. $\mu(\emptyset)=0$
2. \forall disjoint $A_{1}, A_{2}, \cdots \in \mathcal{F}$ then $\mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$

Caratheodory extension Theorem:

Definition 3. For a given set Ω, we may define a $\operatorname{ring} R$ as a subset of the powerset of Ω which has the following properties

- $\emptyset \in R$
- For all $A, B \in R$ we have $A \cup B \in R$
- For all $A, B \in R$ we have $A \backslash B \in R$

This theorem states that if there exists a measure μ on a ring R then there exists a measure μ^{*} on the sigma algebra of that ring such that μ^{*} is an extension of $\mu\left(\right.$ That is, $\left.\mu^{*}\right|_{R}=\mu$)

Dynkin uniqueness of measure

Definition 4. Let Ω be a nonempty set, and let D be a collection of subsets of Ω. Then D is a λ-system if

1. $\Omega \in D$
2. If $A, B \in D$ and $A \subseteq B$, then $B \backslash A \in D$.
3. If $A_{1}, A_{2}, A_{3}, \ldots$ is a sequence of subsets in D and $A_{n} \subseteq A_{n+1}$ for all $n \geq 1$ then $\bigcup_{n=1}^{\infty} A_{n} \in D$

Equivalently, D is a π-system if

1. $\Omega \in D$
2. If $A \in D$ then $A^{c} \in D$.
3. If $A_{1}, A_{2}, A_{3}, \ldots$ is a sequence of subsets in D and $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$ then $\bigcup_{n=1}^{\infty} A_{n} \in D$

An important fact is that a λ-system which is also a π-system (i.e. closed under finite intersection) is a σ-algebra

Theorem 1 (Dynkin's $\pi-\lambda$ theorem). If P is $a \pi$-system and D is a λ-system with $P \subseteq D$ then $\sigma(P) \subseteq D$. In other words the σ-algebra generated by P is contained in D.

Completion of measure There are certain technical benefits to having the following property in a measure space (X, \mathcal{F}, μ) called completion: if $N \in \mathcal{F}$ satisfies $\mu(N)=0$, then every subset of N is measurable and then of course has measure zero.

It turns out that this can always be arranged by a simple enlargement of the σ-algebra. Let
$\overline{\mathcal{F}}=\{F \in X:$ there exists $B, N \in \mathcal{F}$ and $F \subseteq N$ such that $\mu(N)=0$ and $A=B \cup F\}$

1.2 Lebesgue measure

There exists a measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ which satisfies $\mu\left(\left[a_{1}, b_{1}\right) \times \cdots \times\left[a_{d}, b_{d}\right)=\right.$ $\prod_{n=1}^{d}\left(b_{n}-a_{n}\right)$.
Integration: $f=\sum_{i} c_{i} \mathbf{1}_{A_{i}}$ then $\int f \mathrm{~d} \mu=\sum_{i} c_{i} \mu\left(A_{i}\right)$.
The power of Lebesgue-integration lies in the fact that one can prove convergence theorems such as monotone convergence and dominated convergence.

Theorem 2 (Monotone convergence theorem). Let f_{n} be nonnegative measurable functions, ans assume $f_{n} \leq f_{n+1}$ almost everywhere, for each n. Let $f=\lim _{n \rightarrow \infty} f_{n}$. This limit exists at least almost everywhere. Then.

$$
\int f d \mu=\lim _{n \rightarrow \infty} f_{n} d \mu
$$

Theorem 3 (Dominated convergence theorem). Let f_{n} be measurable functions, and assume the limit $f=\lim _{n \rightarrow \infty} f_{n}$ exists almost everywhere. Assume there exists a function $g \geq 0$ such that $\left|f_{n}\right| \leq g$ almost everywhere for each n and $\int g d \mu<\infty$. Then

$$
\int f d \mu=\lim _{n \rightarrow \infty} f_{n} d \mu
$$

L^{p}-spaces: For a Borel-measurable function $f: \Omega \rightarrow \mathbb{R}$ let $\|f\|_{L^{p}}=\left(\int|f|^{p} \mathrm{~d} \mu\right)^{\frac{1}{p}}$. Let $\mathcal{L}^{p}(\Omega, \mathcal{F}, \mu)=\left\{f: \Omega \rightarrow \mathbf{R}\right.$ measurable $\left.:\|f\|_{p}<\infty\right\}$. Then \mathcal{L}^{p} is a vector space. $\|.\|_{L^{p}}$ is not a norm because $\|f\|_{L^{p}}=0 \nRightarrow f=0$. Let $f \sim g$ if $f=g$ almost everywhere, which is an equivalence relation. Then $L^{p}=\mathcal{L}^{p} \backslash \sim$ becomes a normed space. Moreover L^{p} is a complete space.
Hölder's inequality: $\|f \cdot g\|_{L^{1}} \leq\|f\|_{L^{p}} \cdot\|g\|_{L^{q}}$ for $\frac{1}{p}+\frac{1}{q}=1$
Theorem 4 (Fubini's theorem). Let $f \in L^{1}(\mu \otimes \nu)$. Then $f_{x} \in L^{1}(\nu)$ for μ-almost every $x, f_{y} \in L^{1}(\mu)$ for ν-almost every $y, g \in L^{1}(\mu)$ and $h \in L^{1}(\nu)$. Iterated integration as follows, is valid:

$$
\begin{aligned}
\int_{X \times Y} f d(\mu \otimes \nu) & =\int_{X}\left\{\int_{Y} f(x,) \nu(d y)\right\} \mu(d x) \\
& =\int_{Y}\left\{\int_{X} f(x, y) \mu(d x)\right\} \nu(d y)
\end{aligned}
$$

1.3 Probability spaces

We call (Ω, \mathcal{F}, P) a probability space if $P(\Omega)=1$.
Definition 5. $X: \Omega \rightarrow \mathbb{R}$ is called a random variable if it is measurable.
Definition 6. σ-algebras $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ are independent if

$$
P\left(\bigcap_{i=1}^{n} A_{i}\right)=\prod_{i=1}^{n} P\left(A_{i}\right) \quad \forall A_{i} \in \mathcal{F}_{i} \quad \forall i \leq n \quad \forall n \in \mathbb{N}
$$

Definition 7. $X_{1}, X_{2}, \ldots,: \Omega \rightarrow \mathbb{R}$ are independent if $\sigma\left(X_{1}\right), \sigma\left(X_{2}\right), \ldots$, are independent.

Image measure: $X: \Omega \rightarrow \mathbb{R}^{d}, \mu_{X}(B)=P(X \in B), B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$
Expectation: $\mathbb{E}[X]=\int_{\Omega} X \mathrm{~d} P$
Theorem 5. $X_{1}, \ldots, X_{n}: \Omega \rightarrow \mathbb{R}$ are independent \Longleftrightarrow the distribution of $\left(X_{1}, \ldots, X_{n}\right)$ is $\mu=\mu_{X_{1}} \times \cdots \times \mu_{X_{n}}$
Theorem 6. If X and Y are independent, then $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$ and $X \in L^{p}, Y \in L^{p^{\prime}}$ then $\frac{1}{p}+\frac{1}{p^{\prime}}=1$

Proof. $\mu_{X}(B)=P(X \in B), \mu_{Y}(B)=P(Y \in B)$ then

$$
\begin{aligned}
& \mathbb{E}[X] \cdot \mathbb{E}[Y]=\iint x y \mathrm{~d} \mu_{X}(x) \mathrm{d} \mu_{Y}(y) \\
& \underbrace{=}_{\text {Fubini }} \iint x y \mathrm{~d} \mu_{X} \times \mu_{Y}(x, y) \\
& \underbrace{=}_{\text {independence }} \mathbb{E}[X Y]
\end{aligned}
$$

Definition 8. Almost surely (a.s.) means with probability 1
Definition 9. Let $\left\{X_{n}\right\}$ be a sequence of random variables and X a random variable, all real valued.

1. $X_{n} \rightarrow X$ almost surely if

$$
P\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}=1
$$

2. $X_{n} \rightarrow X$ in probability if for every $\epsilon>0$

$$
\lim _{n \rightarrow \infty} P\left\{\omega:\left|X_{n}(\omega)-X(\omega)\right| \geq \epsilon\right\}=0
$$

3. $X_{n} \rightarrow X$ in L^{p} for $1 \leq p<\infty$ if

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}(\omega)-X(\omega)\right|^{p}\right]=0
$$

4. $X_{n} \rightarrow X$ in distribution (also called weakly) if

$$
\lim _{n \rightarrow \infty} P\left(X_{n} \leq x\right)=P(X \leq x)
$$

for each x at which $F(x)$ is continuous.
Theorem 7 (Theorem 1.21). Let $\left\{X_{n}\right\}$ and X be real-valued random variables on a common probability space.

1. If $X_{n} \rightarrow X$ almost surely or in L^{p} for some $1 \leq p<\infty$, then $X_{n} \rightarrow X$ in probability.
2. If $X_{n} \rightarrow X$ in probability, then $X_{n} \rightarrow X$ weakly.
3. If $X_{n} \rightarrow X$ in probability, then there exists a subsequence $X_{n_{k}}$ such that $X_{n_{k}} \rightarrow X$ almost surely.
4. Suppose $X_{n} \rightarrow X$ in probability. Then $X_{n} \rightarrow X$ in L^{1} if and only if $\left\{X_{n}\right\}$ is uniformly integrable.

1.4 Conditional Expectations

Example 5. Let (Ω, \mathcal{F}, P) be a probability space. Let $x_{1}, \ldots, x_{m}, z, \ldots, z_{n} \in \mathbb{R}$ be distinct. Now let $X: \Omega \rightarrow\left\{x_{1}, \ldots, x_{m}\right\}, Z: \Omega \rightarrow\left\{z_{1}, \ldots, z_{n}\right\}$. Recall: $P\left(X=x_{i} \mid Z=z_{j}\right) \stackrel{\text { def }}{=} \frac{P\left(X=x_{i}, Z=z_{j}\right)}{P\left(Z=z_{j}\right)}$ and $\mathbb{E}\left[X \mid Z=z_{j}\right]=\sum_{i=1}^{m} x_{i} P\left(X=x_{i} \mid Z=\right.$ $\left.z_{j}\right)=\frac{1}{P\left(Z=z_{j}\right)} \int_{\left\{Z=z_{j}\right\}} X \mathrm{~d} P$.
A possible definition of $Y=\mathbb{E}[X \mid Z]$ could be $Y: \Omega \rightarrow \mathbb{R}, Y=\sum_{j=1}^{n} Y_{j} \mathbf{1}_{\left\{Z=z_{j}\right\}}$, where $Y_{j}=\mathbb{E}\left[X \mid Z=z_{j}\right]$.
How to extend this to general X ? Let $A=\sigma(Z)$
Observation 1: Y is constant on sets $\left\{Z=z_{j}\right\}$ thus Y is \mathcal{A}-measurable.
Observation 2: $\int Y \mathrm{~d} P=y_{j} \cdot P\left(Z=z_{j}\right)=\int_{\left\{Z=z_{j}\right\}} X \mathrm{~d} P$. Thus $\forall G \in \mathcal{G}$: $\int_{G} Y \mathrm{~d} P=\int_{G} X \mathrm{~d} P$

Definition 10. Let (Ω, \mathcal{F}, P) be a probability space. Let $X \in L^{1}(P)$ and let $\mathcal{A} \subseteq \mathcal{F}$ be a sub- σ-algebra.
We say that $Y: \Omega \rightarrow \mathbb{R}$ is the conditional expectation of X given \mathcal{A} if:

1. Y is \mathcal{A}-measurable.
2. $Y \in L^{1}(P)$ and $\forall A \in \mathcal{A} \int_{A} Y \mathrm{~d} P=\int_{A} x \mathrm{~d} P$

Notation: $Y(\omega)=\mathbb{E}[X \mid \mathcal{A}](\omega)$ or $\mathbb{E}[X \mid \mathcal{A}]$
Note that $\mathbb{E}[\mathbb{E}[X \mid \mathcal{A}]]=\mathbb{E}[X]$
Theorem 8 (Uniqueness). If Y and \tilde{Y} are both conditional expectations of X given \mathcal{A} then $Y=\tilde{Y}$ a.s.

Proof. Let $\Delta Y=Y-\tilde{Y}$. Then ΔY is \mathcal{A}-measurable and $\forall A \in \mathcal{A}: \int_{A} \Delta Y \mathrm{~d} P=0$ Let $A_{1}=\{\Delta Y \geq 0\}$ and $A_{2}=\{\Delta Y<0\}$. Then $\mathbb{E}[|\Delta Y|]=\int_{A_{1}} \Delta Y \mathrm{~d} P-$ $\int_{A_{2}} \Delta Y \mathrm{~d} P=0-0=0$. Thus $|\Delta Y|=0$ a.s., thus $Y=\tilde{Y}$ a.s.

Definition 11. In this case Y and \tilde{Y} are called versions of $\mathbb{E}[X \mid \mathcal{A}]$
Theorem 9. Properties of conditional expectation Let (Ω, \mathcal{F}, P) be a probability space. Let $X, Y \in L^{1}(P), \mathcal{A}, \mathcal{B} \subseteq \mathcal{F}$ be sub- σ-fields. Then:

1. $\mathbb{E}[\mathbb{E}[X \mid \mathcal{A}]]=\mathbb{E}[X]$
2. (Linearity) $\mathbb{E}[\alpha X+\beta Y \mid \mathcal{A}]=\alpha \mathbb{E}[X \mid \mathcal{A}]+\beta \mathbb{E}[Y \mid \mathcal{A}], \alpha, \beta \in \mathbb{R}$
3. (Positivity) If $X \geq Y$ then $\mathbb{E}[X \mid \mathcal{A}] \geq \mathbb{E}[Y \mid \mathcal{A}]$.
4. If X is \mathcal{A}-measurable then $\mathbb{E}[X \mid \mathcal{A}]=X$.
5. (Taking out what is known). If X is \mathcal{A}-measurable and $X Y \in L^{1}(P)$, then $\mathbb{E}[X Y \mid \mathcal{A}]=X \mathbb{E}[Y \mid \mathcal{A}]$
6. (Independence) If X and \mathcal{A} are independent, then $\mathbb{E}[X \mid \mathcal{A}]=\mathbb{E}[X]$
7. (Tower property) If $\mathcal{A} \subseteq \mathcal{B}$, then $\mathbb{E}[\mathbb{E}[X \mid \mathcal{B}] \mid \mathcal{A}]=\mathbb{E}[X \mid \mathcal{A}]$ and also $\mathbb{E}[\mathbb{E}[X \mid \mathcal{A}] \mid \mathcal{B}]=$ $\mathbb{E}[X \mid \mathcal{A}]$ by 4.
8. If $\mathcal{A} \subseteq \mathcal{B}$ and $\mathbb{E}[X \mid \mathcal{B}]$ is \mathcal{A}-measurable, then $\mathbb{E}[X \mid \mathcal{B}]=\mathbb{E}[X \mid \mathcal{A}]$.
9. (Jensen's inequality) Let $f:(a, b) \rightarrow \mathbb{R}$ be convex, $-\infty \leq a<b<\leq \infty$. Assume that $a<X<b$. a.s. and $f(X) \in L^{1}(P)$ Then: $f(\mathbb{E}[X \mid \mathcal{A}] \leq$ $\mathbb{E}[f(X) \mid \mathcal{A}]$

Proof. Simple exercises: 1,2,4,6,8
Good exercises: 3,5,7
Too difficult: 9,10

2 Stochastic Processes

Let (Ω, \mathcal{F}, P) be a probability space. From now on we will assume that \mathcal{F} is complete, i.e. if $N \in \mathcal{A}$ satisfies $\mu(N)=0$, then every subset of N is measurable (and then of course has measure zero).

Definition 12. A filtration on (Ω, \mathcal{F}, P) is a family of σ-fields $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ such that $\mathcal{F}_{s} \subseteq \mathcal{F}_{t} \subseteq \mathcal{F}, \forall 0 \leq s<t<\infty$.

Definition 13. A process $X: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ if $\mathcal{B}_{\mu_{F}} \times \mathcal{F}$-measurable.
Notation: $\left(X_{t}\right)_{t \geq 0},(t, \omega) \rightarrow X_{t}(\omega)$ or $X(t, \omega)$
Example 6. $\left(X_{t}\right)_{t \geq 0}$ a stock price. A possible filtration $\mathcal{F}_{t}^{X}=\sigma\left(X_{s}: s \in[0, t]\right)$, our knowledge at time t.

Convention: \mathcal{F}_{t} contains all null sets of \mathcal{F} otherwise replace \mathcal{F}_{t} by $\overline{\mathcal{F}}_{t}=\{\mathcal{B} \in$ $\mathcal{F}: \exists \mathcal{A} \in \mathcal{F}_{t}$ s.t. $\left.P(\mathcal{A} \Delta \mathcal{B})=0\right\}$ where $\mathcal{A} \Delta \mathcal{B}$ is the symmetric difference.

Definition 14. $\left(X_{t}\right)_{t \geq 0}$ is called adapted to $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ if $\forall t \geq 0: \omega \rightarrow X_{t}(\omega)$ is \mathcal{F}_{t}-measurable

Definition 15. $\left(X_{t}\right)_{t \geq 0}$ is called progressively measurable if $\forall T \geq 0 X$ restricted to $[0, T] \times \Omega$ is $\mathcal{B}_{[0, T]}$

Observation: X progressively measurable $\Rightarrow X$ is adapted.
Definition 16. $\left(X_{t}\right)_{t \geq 0},\left(Y_{t}\right)_{t \geq 0}$ are called modifications or versions if $\forall t \geq$ $0, P\left(X_{t}=Y_{t}\right)=1$.
$\left(X_{t}\right)_{t \geq 0},\left(Y_{t}\right)_{t \geq 0}$ are called indistinguishable if $P\left(X_{t}=Y_{t}, \forall t \geq 0\right)=1$.
Theorem 10. Assume X is adapted to $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ and X is left or right-continuous, then X is progressively measurable.

Definition 17. X is called cadlag if it has right-continuous paths and $\forall \omega \in \Omega$: $\forall t>0: \lim _{s \uparrow t} X_{s}(\omega)$ exists. caglad left-continuous and right limits exists.

Theorem 11. Assume X, Y are right-continuous. Assume: $S \subseteq \mathbb{R}_{+}$is dense and countable. If $\forall t \in S: P\left(X_{t}=Y_{t}\right)=1$, then X and Y are indistinguishable. Similar for left-continuous if $0 \in S$.

Proof. Let $\forall s \in S: V_{s}=\left\{X_{s}=Y_{s}\right\}$. Then $P\left(V_{s}\right)=1$. Let $\Omega_{0}=\bigcap_{s \in S} V_{s}$, then $P\left(\Omega_{0}\right)=1$.
Claim: $\forall \omega \in \Omega_{0}, \forall t>0 X_{t}=Y_{t}$ thus $P\left(X_{t}=Y_{t}, \forall t>0\right)=P\left(\Omega_{0}\right)=1$.
Definition 18. $\tau: \Omega \rightarrow[0, \infty]$ is called a stopping time if $\forall t \in(0, \infty):\{\tau<$ $t\} \in \mathcal{F}_{t}$

Example 7. First time a stock price is >100.
First time a stock price is lower than the price a week before.
Theorem 12. X adapted and continuous, $H \in \mathbb{R}$ is closed. Define: $\tau_{H}(\omega)=$ $\inf \left\{\tau \geq 0: X_{t}(\omega) \in H\right\}$, then τ_{H} is a stopping time.

2.1 Quadratic variation

We start with bounded variation from section 1.1.9.
Given $F:[a, b] \rightarrow \mathbb{R}$, define: $V_{F}(t):=\sup \left\{\sum_{i=1}^{n}\left|F\left(S_{i}\right)-F\left(S_{i-1}\right)\right|: a=S_{0}<\right.$ $\left.S_{1}<\cdots<S_{n}=b\right\}$. F has bounded variation if $V_{F}(b)<\infty$.
Observation: $V_{F}(0)=0, V_{f}$ is non-decreasing.
Notation: BV $[a, b]$ is space of functions of bounded variation.
Theorem 13. $F \in B V[a, b] \Longleftrightarrow F$ is the difference of two nondecreasing functions: $F=F_{1}-F_{2}$.

Lebesgue-Stieltjes integral: F increasing on $[a, b]$ then $\Lambda_{f}(u, v]=F(v)-$ $F(u)$ extends to a positive Borel measure Λ_{F} on $[a, b]$, which is called the Lebesgue-Stieltjes measure.
Notation: $\int_{(a, b]} g \mathrm{~d} \Lambda_{F}$ or $\int_{(a, b]} g(x) \mathrm{d} F(x)$ for the Lebesgue-Stieltjes integral.
Careful if F has a jump in t, then $\Lambda_{F}(\{t\})=F(t)-F(t-)$.
An idea for quadratic variation is $\sum\left(F\left(S_{i}\right)-F\left(S_{i-1}\right)\right)^{2}$, but we want more. Given $\pi(t)=\left\{0=t_{0}, \ldots, t_{m}=t\right\}$ a mesh on $[0, t]$ and process Y. Let $V_{y}^{2}(\pi(t))=\sum_{i=0}^{m-1}\left|Y_{t_{i+1}}(\omega)-Y_{t_{i}}(\omega)\right|^{2}$.
We say that V_{Y}^{2} converges in probability to process Z if $\forall \epsilon>0 \exists \delta>0: \forall t>$ $0, \forall \pi(t), \operatorname{mesh}(\pi)<\delta \Rightarrow P\left(\left|V_{Y}^{2}(\pi(t))-Z_{t}\right|>\epsilon\right)<\epsilon$
Notation: $[Y]_{t}=\lim _{\operatorname{mesh}(\pi) \rightarrow 0} V_{Y}^{2}(\pi(t))$ in probability.
Definition 19. $[Y]=\left([Y]_{t}\right)_{t \geq 0}$ is called the quadratic variation process of Y if

- the limit exists.
- There exists a version of $[Y]$ s.t. $\forall \omega: t \rightarrow[Y]_{t}(\omega)$ is nondecreasing.

Definition 20. $[X, Y]=\frac{1}{4}[X+Y]-\frac{1}{4}[X-Y]$ if the right hand side exists.

$$
\lim _{\mathrm{mesh} \rightarrow 0} \sum_{i}\left(X_{t_{i+1}}-X_{t_{i}}\right)\left(Y_{t_{i+1}}-Y_{t_{i}}\right)=[X, Y]_{t}
$$

where we use the fact that $\frac{1}{4}(a+b)^{2}-\frac{1}{4}(a-b)^{2}=a b$
Also: $[X, Y]_{t}=\frac{1}{2}\left([X+Y]_{t}-[X]-[Y]\right)$
Theorem 14. If X, Y are cadlag and $[X, Y]$ exists then $[X, Y]$ has a cadlag modification and $\Delta[X, Y]_{t}=\left(\Delta X_{t}\right)\left(\Delta Y_{t}\right)$. Here $\Delta Z_{t}=Z_{t}-Z_{t-}$ for Z cadlag.
Theorem 15. $\left|[X, Y]_{t}-[X, Y]_{s}\right| \leq\left([X]_{t}-[X]_{s}\right)^{\frac{1}{2}}\left([Y]_{t}-[Y]_{s}\right)^{\frac{1}{2}}$
Theorem 16 (Kunita-Watanabe inequality). Assume that $[X],[Y],[X, Y]$ exist and are right-continuous. Then for bounded and measurable functions G, H : $[0, T] \times \Omega \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \left|\int_{[0, T]} G(t, \omega) H(t, \omega) d[X, Y]_{t}(\omega)\right| \\
& \quad \leq\left(\int_{[0, T]} G(t, \omega)^{2} d[X]_{t}(\omega)\right)^{1 / 2}\left(\int_{[0, T]} H(t, \omega)^{2} d[Y]_{t}(\omega)\right)^{1 / 2}
\end{aligned}
$$

Remark: by a Radon-Nikodym derivative this result also holds iwth

$$
\begin{aligned}
& \left|\int_{[0, T]} G(t, \omega) H(t, \omega)\right| \Lambda_{[X, Y](\omega)}|\mathrm{d} t| \\
& \quad \leq\left(\int_{[0, T]} G(t, \omega)^{2} \mathrm{~d}[X]_{t}(\omega)\right)^{1 / 2}\left(\int_{[0, T]} H(t, \omega)^{2} \mathrm{~d}[Y]_{t}(\omega)\right)^{1 / 2}
\end{aligned}
$$

3 Brownian motion

Definition 21. Let (Ω, \mathcal{F}, P) be a probability space with filtration $\left(\mathcal{F}_{t}\right)_{t>0}$. A process $\left(B_{t}\right)_{t \geq 0}$ is called a one-dimensional Brownian motion w.r.t. $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ if:

1. For almost all $\omega \in \Omega: t \rightarrow B_{t}(\omega)$ is continuous.
2. $\forall 0 \leq s \leq t, B_{t}-B_{s}$ is independent of \mathcal{F}_{s} and has a normal distribution with $\mathbb{E}\left[B_{t}-B_{s}\right]=0$ and $\mathbb{E}\left[\left(B_{t}-B_{S}\right)^{2}\right]=t-s$

If additionally 3 . $B_{0}=0$ a.s. then B is called a standard Brownian motion.
Theorem 17. Assume (Ω, \mathcal{F}, P) is rich enough. Then there exists a process $\left(B_{t}\right)_{t \geq 0}$ such that $\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian Motion w.r.t. $\left(\mathcal{F}_{t}\right)_{t \geq 0}$

Two pages about the construction of Brownian Motion - Not relevant

 I think.Theorem 18. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian Motion w.r.t. $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. Then $\forall s \leq t$ we have that $\mathbb{E}\left[B_{t} \mid \mathcal{F}_{s}\right]=B_{s}$ and $\mathbb{E}\left[B_{t}^{2}-t \mid \mathcal{F}_{s}\right]=B_{s}^{2}-s$

Proof. We start with noticing that $\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}-B_{s}\right]=0$. Therefore $\mathbb{E}\left[B_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}-B_{s}+B_{s} \mid \mathcal{F}_{s}\right]=B_{s}$. And $\mathbb{E}\left[\left(B_{t}-B_{s}\right)^{2} \mid \mathcal{F}_{s}\right]=t-s$ thus $\mathbb{E}\left[B_{t}^{2}-2 B_{t} B_{s}+B_{s}^{2} \mid \mathcal{F}_{s}\right]=t-s$ and $\mathbb{E}\left[B_{t} B_{s} \mid \mathcal{F}_{s}\right]=B_{s} \mathbb{E}\left[B_{t} \mid \mathcal{F}_{s}\right]=B_{s}^{2}$.
Conclusion: $\mathbb{E}\left[B_{t}^{2} \mid \mathcal{F}_{s}\right]-B_{s}^{2}=t-s$
Theorem 19. $[B]_{t}=t$, moreover for all partitions π we have that

$$
\mathbb{E}\left[\left(\sum_{i=0}^{m(\pi)-1}\left(B_{t_{i+1}}-B_{t_{i}}\right)^{2}-t\right)^{2}\right] \leq 2 \operatorname{tmesh}(\pi)
$$

Thus $\sum_{i=0}^{m(\pi)-1}\left(B_{t_{i+1}}-B_{t_{i}}\right)^{2} \rightarrow t$ in $L^{2}(p)$ and in P as $\operatorname{mesh}(\pi) \rightarrow 0$.
Theorem 20. Almost surely for all $T>0$, the path $t \mapsto B_{t}(\omega)$ is not a member of $B V[0, T]$.

4 Uniform integrability and Martingales

4.1 Uniform integrability

Definition 22. A collection C of random variables is called uniformly integrable (UI) if

$$
\lim _{r \rightarrow \infty} \sup _{Z \in C} \int_{\{|Z|>r\}}|Z| \mathrm{d} P=0
$$

Example 8. If $X \in L^{1}$, then $C=\{X\}$ is UI.
Example 9. If $X \in L^{1}$ then $C=\{Z: \Omega \rightarrow \mathbb{R}:|Z| \leq|X|$ a.s. $\}$ is UI.
Theorem 21. Let $p>1$. If $C \subseteq L^{p}$ and $K:=\sup _{Z \in C}\|Z\|_{L^{p}}<\infty$ then C is UI.

Example 10. $\Omega=[0,1], P$ is Lebesgue-measure. $X_{n}=n \mathbf{1}_{\left[0, \frac{1}{n}\right]}, n \geq 1$. Then $C=\left\{X_{n}: n \in \mathbb{N}\right\}$ is not UI.
Indeed, given $r>0$ choose $n>r$. Then $\int_{\left\{\left|X_{n}\right|>r\right\}}\left|X_{n}\right| \mathrm{d} P=\int\left|X_{n}\right| \mathrm{d} P=1$. Thus $\sup _{X \in C} \int_{\left\{\left|X_{n}\right|>r\right\}}\left|X_{n}\right| \mathrm{d} P=1$ for all $r>0$.

Theorem 22. Let (Ω, \mathcal{F}, P) be a probability space. Let $X \in L^{1}(P)$ and define $C:=\{\mathbb{E}[X \mid \mathcal{G}]: \mathcal{G} \subseteq \mathcal{F}\}$. Then C is uniformly integrable.

Theorem 23 (Bounded convergence theorem). Assume $X_{n} \rightarrow X$ in probability. Assume $\exists K>0: \forall n \in \mathbb{N}, \forall \omega \in \Omega\left|X_{n}(\omega)\right| \leq K$, then $X_{n} \rightarrow X$ in L^{1}

Theorem 24. Let $X_{n}, X \in L^{1}$.

$$
X_{n} \rightarrow X \text { in } L^{1} \Longleftrightarrow\left\{\begin{array}{l}
X_{n} \rightarrow X \text { in probability } . \\
\left\{X_{n}: n \geq 1\right\} \text { is UI. }
\end{array}\right.
$$

4.2 Martingales

Definition 23. $\left(M_{t}\right)_{t \geq 0}$ is called a martingale w.r.t. $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ if

1. $M_{t} \in L^{1}(P)$
2. $\left(M_{t}\right)$ is $(\mathcal{F})_{t}$-adapted.
3. $\forall 0 \leq s<t: \mathbb{E}\left[M_{t} \mid \mathcal{F}_{S}\right]=M_{s}$ almost surely

Submartingale: Replace 2. by $\mathbb{E}\left[M_{t} \mid \mathcal{F}_{S}\right] \geq M_{s}$ Supermartingale: Replace 2. by $\mathbb{E}\left[M_{t} \mid \mathcal{F}_{S}\right] \leq M_{s}$

Note that $\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right] \geq M_{s} \Longleftrightarrow \forall A \in \mathcal{F}_{s} \mathbb{E}\left[\mathbf{1}_{A} M_{t}\right] \geq \mathbb{E}\left[\mathbf{1}_{A} M_{s}\right]$
M is called square integrable if $\forall t \geq 0: \mathbb{E}\left[M_{t}^{2}\right]<\infty$. The discrete definition is analogue.

Theorem 25. If $\left(M_{t}\right)_{t \geq 0}$ is a martingale and ϕ is convex and $\forall t>0: \phi\left(M_{t}\right) \in$ L^{1} then $\phi\left(M_{t}\right)$ is a submartingale.

Proof. Jensen's inequality for $s<t: \mathbb{E}\left[\phi\left(M_{t}\right) \mid \mathcal{F}_{s}\right] \geq \phi\left(\mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]\right)=\phi\left(M_{s}\right)$.

4.3 Optional stopping

We extend the times used in the definition of martingales to stopping times.
Notation: $x \wedge y=\min \{x, y\}$ and $x \vee y=\max \{x, y\}$.
First the discrete case:
Theorem 26 (Lemma 3.4). Let M be a submartingale. Assume that τ and σ are stopping times whose values lie in an ordered countable set $\left\{s_{1}<s_{2}<s_{3}<\right.$ $\ldots\} \cup\{\infty\}$ where $s_{n} \rightarrow \infty$. Then for any $T<\infty$,

$$
\mathbb{E}\left[M_{\tau \wedge T} \mid \mathcal{F}_{\sigma}\right]=M_{\sigma \wedge \tau \wedge T}
$$

Theorem 27 (Lemma 3.5). Let M be a submartingale with right-continuous paths and $T<\infty$. Let ρ be a stopping time with $P(\rho<T)=1$. Then:

$$
\mathbb{E}\left[M_{\rho}\right] \leq 2 \mathbb{E}\left[M_{T}^{+}\right]-\mathbb{E}\left[M_{0}\right]
$$

so $M_{\rho} \in L^{1}$.
Theorem 28. Let M be a right-continuous submartingale. Let σ, τ be stopping times, $T<\infty$. Then $\mathbb{E}\left[M_{\tau \wedge T} \mid \mathcal{F}_{\sigma}\right] \geq M_{\sigma \wedge \tau \wedge T}$. Note the integrability by lemma 3.5

Theorem 29 (Corollary 3.7). Suppose $\left(M_{t}\right)_{t \geq 0}$ is a right-continuous (sub)martingale and τ is a stopping time. Then $M^{\tau}=\left(M_{t \wedge \tau}\right)_{t \geq 0}$ is a right-continuous (sub)martingale. If M is an L^{2} martingale, then M^{τ} is as well.

Theorem 30 (Corollary 3.8). Suppose M is a right-continuous submartingale. Let $\{\sigma(u): u \geq 0\}$ be nondecreasing, $[0, \infty)$-values process such that $\sigma(u)$ is a bounded stopping time for each u. Then $\left\{M_{\sigma(u)}: u \geq 0\right\}$ is a submartingale with respect to the filtration $\left\{\mathcal{F}_{\sigma(u)}: u \geq 0\right\}$

5 Further investigating martingales

5.1 Inequalities and limits

Towards Doob's inequality:
Theorem 31 (Lemma 3.9). Let M be a submartingale, $0<T<\infty$ and H a finite subset of $[0, T]$. Then for all $r>0$

$$
P\left(\left\{\max _{t \in H} M_{t} \geq r\right\}\right) \leq r^{-1} \mathbb{E}\left[M_{T}^{+}\right]
$$

and

$$
P\left(\left\{\min _{t \in H} M_{t} \leq r\right\}\right) \leq r^{-1}\left(\mathbb{E}\left[M_{T}^{+}\right]-\mathbb{E}\left[M_{0}\right]\right)
$$

Theorem 32 (Doobs mean). Let M be a right-continuous submartingale and $0<T<\infty$. Then for all $r>0$:

$$
P\left(\left\{\sup _{t \in H} M_{t} \geq r\right\}\right) \leq r^{-1} \mathbb{E}\left[M_{T}^{+}\right]
$$

and

$$
P\left(\left\{\inf _{t \in H} M_{t} \leq r\right\}\right) \leq r^{-1}\left(\mathbb{E}\left[M_{T}^{+}\right]-\mathbb{E}\left[M_{0}\right]\right)
$$

Theorem 33 (Doob's Inequality). Let M be a nonnegative, right-continuous submartingale and $0<T<\infty$. Then for $1<p<\infty$

$$
\begin{aligned}
\mathbb{E} & {\left[\sup _{0 \leq t \leq T} M_{t}^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \mathbb{E}\left[M_{T}^{p}\right] } \\
& P\left(\sup _{0 \leq t \leq T} M_{t} \geq C\right) \leq \frac{\mathbb{E}\left[M_{T}^{p}\right]}{C^{p}}
\end{aligned}
$$

Example 11. For example if $\left(N_{t}\right)$ is a right-continuous martingale, we can apply Doob's inequality on $M_{t}=\left|N_{t}\right|$.

Most important cases of martingale convergence: M_{t} is a martingale with $\sup _{t<\infty} \mathbb{E}\left[\left|M_{t}\right|\right]<\infty$ then $M_{\infty}=\lim _{t \rightarrow \infty} M_{t}$ exists almost surely and $M_{\infty} \in L^{1}$. Convergence need not be in L^{1}. This holds if and only if $\left\{M_{t}: t \geq 0\right\}$ is uniformly integrable.

5.2 Local martingales and semimartingales

Notation: For process X, τ a stopping time we denote with $X_{t}^{\tau}=X_{t \wedge \tau .} X^{\tau}$ is called the stopped process.

Definition 24. M_{t} is called a local martingale if

1. M_{t} is $\left(\mathcal{F}_{t}\right)$ adapted.
2. There exists a sequence of stopping times $\left(\tau_{k}\right)_{k=1}^{\infty}$ such that $\tau_{1} \leq \tau_{2} \leq$ $\ldots, \tau_{k} \rightarrow \infty$ a.s. and $\forall k: M^{\tau_{k}}$ is a martingale.
$\left(\tau_{k}\right)_{k}$ is called a localizing sequence for M.
M is called a local square integrable martingale if $1 ., 2$. and $M^{\tau_{k}} \in L^{2}$ for all k.
Remark: If M has continuous paths, we can take $\tau_{k}=\inf \left\{t \geq 0:\left|M_{t}\right| \geq k\right\}$ as a localizing sequence. Moreover $\left|M_{t}^{\tau_{k}}\right| \leq k$

Definition 25. A cadlag process Y is called a semimartingale if there exists a local martingale M with $M_{0}=0$ and there exists a finite variation process V with $V_{0}=0$ such that $Y_{t}=M_{t}+V_{t}+Y_{0}$ for all $t \geq 0$.

Continuous semimartingale: if additionally M, V are continuous.

5.3 Quadratic variation for Semimartingales

Remember that $[B]_{t}=t$ for a Brownian Motion and $[B, Y]_{t}=0$ if B, Y are independent Brownian Motions.

Theorem 34 (Theorem 3.26). Let M be a right-continuous local martingale, then $[M]$ exists and there is a version of $[M]$ which is:

- real-valued (so no ∞)
- right-continuous
- nondecreasing
- adapted
- $[M]_{0}=0$

If M is an $L^{2}-$ martingale then $\lim _{\text {mesh }(\pi) \rightarrow 0} \sum_{i=0}^{m(\pi)-1}\left|M_{t_{i+1}}-M_{t_{i}}\right|^{2} \rightarrow[M]_{t}$ is in L^{1} and $\mathbb{E}\left[[M]_{t}\right]=\mathbb{E}\left[M_{t}^{2}-M_{0}^{2}\right]$
If M is continuous, then $[M]$ has a version, which is continuous.
Theorem 35 (Lemma 3.27). Let M be a right-continuous local martingale. Let τ be a stopping time. Then $\left[M^{\tau}\right]=[M]^{\tau}$. This means that for all $t \geq 0$: $\left[M^{\tau}\right]-T=[M]_{\tau \wedge t}$
Theorem 36 (Theorem 3.28). If M is a right-continuous (local) L^{2}-martingale then $M^{2}-[M]$ is as well.

If M, N are right-continuous (local) L^{2}-martingales then $[M, N]$ also exists and $\left[M^{\tau}, N\right]=\left[M^{\tau}, N^{\tau}\right]=[M, N]^{\tau}$.
Moreover $M N-[M, N]$ is also a (local) L^{2}-martingale again.
Theorem 37 (Corallary 3.31). Let M be a cadlag local martingale, V a cadlag $F V$ process $M_{0}=V_{0}=0$, and $Y=Y_{0}+M+V$ the cadlag semimartingale. Then $[Y]$ exists and is given by:

$$
[Y]_{t}=[M]_{t}+2[M, V]_{t}+[V]_{t}
$$

Furthermore, $\left[Y^{\tau}\right]=[Y]^{\tau}$

6 Spaces of martingales and Stochastic Integration

6.1 Spaces of martingales

From now on only continuous L^{2}-martingales \mathcal{M}_{2}^{C} and sometimes local $\mathcal{M}_{2, \text { loc }}^{C}$. Remind from analysis: $C[a, b]$ with $\|f\|_{\infty}=\sup _{t \in[a, b]}|f(t)|$ is complete. Furthermore $L^{2}(p)$ is complete. $\|X\|_{L^{2}}=\left(\mathbb{E}\left[|X|^{2}\right]\right)^{\frac{1}{2}}$
Possible norm on martingales on $[0, T]$ would be $\left\|M_{T}\right\|_{L^{2}}$. But note that for all $t \in[0, T]\left\|M_{t}\right\|_{L^{2}} \leq\left\|M_{T}\right\|_{L^{2}}$, even more: $\left\|\sup _{t \in[0, T]}\left|M_{t}\right|\right\|\left\|_{L^{2}} \leq 2\right\| M_{T} \|_{L^{2}}$ Thus $\left(M^{(n)}\right)_{n \geq 1}$ sequence such that $M_{T}^{(n)}$ is Cauchy in $L^{2}(p)$ implies $\forall \epsilon>0$

$$
P\left(\sup _{t \in[0, T]}\left|M_{t}^{(n)}-M_{t}^{(m)}\right| \geq \epsilon\right) \leq \frac{\mathbb{E}\left[\left|M_{T}^{(n)}-M_{T}^{(m)}\right|^{2}\right]}{\epsilon^{2}}
$$

by Doob's inequality. This is called $\left(M^{(n)}\right)_{n \geq 1}$ is uniformly Cauchy in probability. After some calculations we find that $\left\|M_{T}\right\|_{L^{2}}$ could become ∞ for $T \rightarrow \infty$. Therefore we define

$$
\|M\|_{\mathcal{M}_{2}^{C}}:=\sum_{k=1}^{\infty} 2^{-k}\left(1 \wedge\left\|M_{k}\right\|_{L^{2}}\right)
$$

but there are many other equivalent choices possible.
This is not a norm because $\|a M\|_{\mathcal{M}_{2}^{C}} \neq|a| \cdot\|M\|_{\mathcal{M}_{2}^{C}}$ but $\mathrm{d}_{M_{2}}(M, N)=\| M-$ $N \mid \|_{\mathcal{M}_{2}^{C}}$ is a metric.

Theorem 38 (Theorem 3.40). Let $\left(\mathcal{F}_{t}\right)$ be complete. Then \mathcal{M}_{2}^{C} is a complete metric space under the metric $d_{\mathcal{M}_{2}}$.

Theorem 39. If $M^{(n)} \rightarrow M$ in \mathcal{M}_{2}^{C}, then:

$$
\forall T<\infty, \forall \epsilon>0: \lim _{n \rightarrow \infty} P\left(\sup _{t \in[0, T]}\left|M_{t}^{(n)}-M_{t}\right| \geq \epsilon\right)=0
$$

This is called uniform convergence on compact intervals.
Furthermore there exists a subsequence $\left(M^{\left(n_{k}\right)}\right)$ and $\Omega_{0} \subseteq \Omega$ such that $P\left(\Omega_{0}\right)=$ 1 and for each $\omega \in \Omega_{0}, \forall T<\infty$

$$
\lim _{n \rightarrow \infty} \sup _{0 \leq t \leq T}\left|M_{t}^{\left(n_{k}\right)}(\omega)-M_{t}(\omega)\right|=0
$$

6.2 Stochastic integration of predictable processes

We only consider $\int X \mathrm{~d} Y$ with Y continuous to simplify the presentation in the lectures.

Definition 26. ρ is the smallest σ-algebra which contains $(s, t] \times F$ with $0 \leq$ $s<t<\infty, F \in \mathcal{F}_{s}$ and $\{0\} \times F_{0}$ with $F_{0} \in \mathcal{F}_{0}$
ρ is called predictable σ-algebra
($s, t] \times F$ is called predictable rectangle.

Theorem 40 (Lemma 5.1). A process is ρ-measurable if and only if it can be approximated by (left)-continuous adapted processes

Proof. We proof that a left-continuous adapted process X is ρ-measurable.
Rewrite $X_{n}(t, \omega)=X_{0}(\omega) \mathbf{1}_{\{0\}}+\sum_{i=0}^{\infty} X_{i 2^{-n}} \mathbf{1}_{\left[i 2^{-n},(i+1) 2^{-n}\right]}(t)$
Now $\left\{X_{n} \in \mathcal{B}\right\}=\underbrace{\{0\} \times\left\{X_{0} \in \mathcal{B}\right\}}_{\in \rho} \cup \bigcup_{i=0}^{\infty} \underbrace{\left(i 2^{-n},(i+1) 2^{-n}\right] \times\left\{X_{i 2^{-n}} \in \mathcal{B}\right\}}_{\in \rho}$. Thus
$\left\{X_{n} \in \mathcal{B}\right\} \in \rho$, thus X_{n} is ρ-measurable.
Also by left continuity $X_{n} \rightarrow X$ on $[0, \infty) \times \Omega$ thus X is ρ-measurable.
Remarks: Not all right-continuous adapted processes are predictable.
$X:[0, \infty) \rightarrow \mathbb{R}$ with the Borel-measure is predictable.
Doleans measure: μ_{M} on ρ Let $M \in \mathcal{M}_{2}^{C}$ then Doleans measure is defined as:

$$
\mu_{M}(A)=\int_{\Omega} \int_{[0, \infty)} \mathbf{1}_{A}(t, \omega) \mathrm{d}[M]_{t}(\omega) \mathrm{d} P(\omega)
$$

The meaning of this formula is that first, for each fixed ω, the function $t \mapsto$ $\mathbf{1}_{A}(t, \omega)$ is integrated by the Lebesgue-Stieltjes measure $\Lambda_{[M](\omega)}$ of the function $t \mapsto[M]_{t}(\omega)$. The resulting integral is a measurable function of ω, which is then averaged over the probability space.
Convention: $\Lambda_{[M](\omega)}(\{0\})=0$.
Note: $\mu_{M}([0, T] \times \Omega)=\mathbb{E}\left[[M]_{t}-[M]_{0}\right]=\mathbb{E}\left[M_{t}^{2}\right]-\mathbb{E}\left[M_{0}^{2}\right]<\infty$ thus μ_{M} is a σ-finite measure.

Example 12. Assume $\left(B_{t}\right)_{t}$ is a standard Brownian Motion and $\mu_{B}=m \otimes p$ where m is the Lebesgue measure. Indeed: $\mu_{B}(B)=\int_{\Omega} \int_{[0, \infty)} \mathbf{1}_{A}(t, \omega) \mathrm{d} t \mathrm{~d} P(\omega)=$ $m \otimes P(A)$

Definition 27. For $X: \mathbb{R}_{+} \times \Omega \rightarrow \mathbb{R}$ predictable:

$$
\|X\|_{\mu_{M, T}}=\left(\int_{[0, T] \times \Omega}|X|^{2} \mathrm{~d} \mu_{M}\right)^{\frac{1}{2}}=\mathbb{E}\left[\int_{[0, T]}|X(t)|^{2} \mathrm{~d}[M]_{t}\right]
$$

$\mathcal{L}_{2}=\mathcal{L}_{2}(M, P)$ is the set of all predictable X such that $\forall T<\infty:\|X\|_{\mu_{M, T}}<\infty$ A metric on \mathcal{L}_{2} is defined as:

$$
\mathrm{d}_{\mathcal{L}_{2}}(X, Y)=\|X-Y\|_{\mathcal{L}_{2}}
$$

with

$$
\|X\|_{\mathcal{L}_{2}}=\sum_{k=1}^{\infty} 2^{-k}\left(1 \wedge\|X\|_{\mu_{M}, k}\right)
$$

Here we identify processes which are μ_{M} almost everywhere equal.
Example 13. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian Motion and X a predictable process. Then we have that $X \in \mathcal{L}_{2}$ if and only if

$$
\forall T<\infty: X \in L^{2}((0, T] \times \Omega)
$$

Example 14. Let $M \in \mathcal{M}_{2}^{C}$. If $\forall T<\infty \exists C_{T}, \forall \omega, t\left|X_{t}(\omega)\right| \leq C_{T}$ and X predictable, then $X \in \mathcal{L}(M, P)$. Indeed,

$$
\begin{aligned}
\mathbb{E}\left[\int_{[0, T]}|X(s)|^{2} \mathrm{~d}[M]_{s}\right] & \leq \mathbb{E}\left[\int_{[0, T]} C_{T}^{2} \mathrm{~d}[M]_{S}\right] \\
& =C_{T}^{2} \mathbb{E}\left[[M]_{T}-[M]_{0}\right] \\
& =C_{T}^{2} \mathbb{E}\left[M_{T}^{2}-M_{0}^{2}\right]<\infty
\end{aligned}
$$

6.3 Construction of the stochastic integral

Our goal is to define $(X \cdot M)_{t}:=\int_{(0, t]} X \mathrm{~d} M$ for $X \in \mathcal{L}_{2}(M, P)$
Step $1 X \in \mathcal{S}_{2}$ a simple predictable process.
Step 2 Prove L^{2}-isometry for $X \cdot M$

$$
\mathbb{E}\left[\left|(X \cdot M)_{T}\right|^{2}\right]=\|X\|_{\mu_{M}, T} \text { for } X \in \mathcal{S}_{2}
$$

Step 3 Approximation/density argument for $X \in \mathcal{L}_{2}(M, P)$. Here completeness of \mathcal{M}_{2}^{C} plays a crucial role.

Step 4 Localization: no integrability conditions on Ω
Step 5 Extension to continuous semimartingales.
Definition 28. A process X of the form:

$$
\left\{\begin{array}{l}
X_{t}(\omega)=\xi_{0}(\omega) \mathbf{1}_{\{0\}}(t)+\sum_{i=1}^{n-1} \xi_{i}(\omega) \mathbf{1}_{\left(t_{i}, t_{i+1}\right]}(t) \\
\text { with } 0=t_{0}<t_{1}<\cdots<t_{n} \text { and } \xi_{i} \text { is } \mathcal{F}_{t_{i}} \text {-measurable. }
\end{array}\right.
$$

is called a simple predictable process, notation $X \in \mathcal{S}_{2}$

7 Stochastic Integration

7.1 Step 1,2 and 3

Definition 29. A process X of the form:

$$
\left\{\begin{array}{l}
X_{t}(\omega)=\xi_{0}(\omega) \mathbf{1}_{\{0\}}(t)+\sum_{i=1}^{n-1} \xi_{i}(\omega) \mathbf{1}_{\left[t_{i}, t_{i+1}\right]}(t) \\
\text { with } 0=t_{0}<t_{1}<\cdots<t_{n} \text { and } \xi_{i} \text { is } \mathcal{F}_{t_{i}} \text {-measurable. }
\end{array}\right.
$$

is called a simple predictable process, notation $X \in \mathcal{S}_{2}$
Theorem 41 (Lemma 5.6). X of the form is indeed predictable
Proof. By linearity it suffices to consider $\xi \mathbf{1}_{(a, b]}$ with $\xi \mathcal{F}$-measurable. Now approximate ξ by simple random variables to get predictable rectangles. Similarly for $\xi \mathbf{1}_{\{0\}}$

Definition 30. For X a simple predictable process and $M \in \mathcal{M}_{2}^{C}$ we define the stochastic integral to be:

$$
(X \cdot M)_{t}(\omega)=\sum_{i=1}^{n-1} \xi_{i}(\omega)\left(M_{t_{i+1} \wedge t}(\omega)-M_{t_{i} \wedge t}(\omega)\right)
$$

Remarks: The value at zero of X and M are irrelevant. Adding a \mathcal{F}_{0}-measurable random variable to M does not change the stochastic integral.
Two other notations: $\int_{0}^{t} X \mathrm{~d} M$ and $I(X)$ for $X \cdot M$.
Theorem 42 (Lemma 5.8). 1. The stochastic integral does not depend on its representation.
2. The integral is linear.

Theorem 43. Let $X \in \mathcal{S}_{2}, M \in \mathcal{M}_{2}^{C}$, then $X \cdot M \in M_{2}^{C}$ and the following L^{2}-isometries hold:

$$
\begin{align*}
\left\|(X \cdot M)_{t}\right\|_{L^{2}(\Omega, P)} & =\|X\|_{L^{2}\left((0, t) \times \Omega, \mu_{M}\right)} \tag{1}\\
\|X \cdot M\|_{\mathcal{M}_{2}^{C}} & =\|X\|_{\mathcal{L}_{2}} \tag{2}
\end{align*}
$$

Now we continue with step 3 :
Theorem 44 (Lemma 5.10). For any $X \in \mathcal{L}_{2}$ there exists a sequence $\left(X_{n}\right)_{n \geq 1} \in$ \mathcal{S}_{2} such that $\lim _{n \rightarrow \infty}\left\|X-X_{n}\right\|_{\mathcal{L}_{2}}=0$
Definition 31. Take $M \in \mathcal{M}_{2}^{C}$ and $X \in \mathcal{L}_{2}(M)$. Choose $\left(X_{n}\right)_{n \geq 1} \in \mathcal{S}_{2}$ such that $\left\|X-X_{n}\right\|_{\mathcal{L}_{2}} \rightarrow 0$. Now we define the stochastic integral for \bar{X} to be

$$
(X \cdot M)_{t}=\lim _{n \rightarrow \infty}\left(X_{n} \cdot M\right)_{t}
$$

Existence of limit. $\left(X_{n}\right)_{n \geq 1}$ exists by lemma 5.10. Also:

$$
\begin{aligned}
\left\|X_{n} \cdot M-X_{m} \cdot M\right\|_{\mathcal{M}_{2}^{C}} & =\left\|\left(X_{n}-X_{m}\right) \cdot M\right\|_{\mathcal{M}_{2}^{C}} \\
& =\left\|X_{n}-X_{m}\right\|_{\mathcal{L}_{2}} \\
& \leq\left\|X_{n}-X\right\|_{\mathcal{L}_{2}}+\left\|X-X_{m}\right\|_{\mathcal{L}_{2}} \rightarrow 0
\end{aligned}
$$

Thus $\left(X_{n} \cdot M\right)_{n \geq 1}$ is a Cauchy sequence in M_{2}^{C} hence converges by the completeness of M_{2}^{C}. Thus $\lim _{n \rightarrow \infty} X_{n} \cdot M$ exists in \mathcal{M}_{2}^{C}
Uniqueness: Take $Z_{n} \in \mathcal{S}_{2}$ such that $Z_{n} \rightarrow X$ in \mathcal{L}_{2}. Then

$$
\begin{aligned}
\left\|X_{n} \cdot M-Z_{n} \cdot M\right\|_{\mathcal{M}_{2}^{C}} & =\left\|\left(X_{n}-Z_{n}\right) \cdot M\right\|_{\mathcal{M}_{2}^{C}} \\
& =\left\|X_{n}-Z_{n}\right\|_{\mathcal{L}_{2}} \\
& \leq\left\|X_{n}-X\right\|_{\mathcal{L}_{2}}+\left\|Z_{n}-X\right\|_{\mathcal{L}_{2}} \rightarrow 0
\end{aligned}
$$

Thus $\left(Z_{n} \cdot M\right)_{n \geq 1}$ has the same limit as $\left(X_{n} \cdot M\right)_{n \geq 1}$ in \mathcal{M}_{2}^{C}. Thus $(X \cdot M)_{t}$ is unique up to indistinguishability.

Theorem 45 (Proposition 5.12). Let $M \in \mathcal{M}_{2}^{C}, X \in \mathcal{L}_{2}(M)$ then $\forall t<\infty$ $\left\|(X \cdot M)_{t}\right\|_{L^{2}(\Omega, P)}=\|X\|_{L^{2}\left((0, t) \times \Omega, \mu_{M}\right.}$ and $\|X \cdot M\|_{\mathcal{M}_{2}^{C}}=\|X\|_{\mathcal{L}_{2}(M)}$
In particular, if $X=Y, \mu_{M}$-almost surely, then $X \cdot M^{2}$ and $Y \cdot M$ are indistinguishable.

Proof. Just take limits in lemma 5.9. Als use the reverse triangle inequality:

$$
\|\|\phi\|-\| \psi\|\|\leq\| \phi-\psi\|
$$

Properties of the stochastic integral

Theorem 46 (Proposition 5.14). This proposition gives some properties of the stochastic integral:

1. Linearity:

$$
(\alpha X+\beta B) \cdot M=\alpha(X \cdot M)+\beta(Y \cdot M)
$$

2. For any $0 \leq u \leq v$,

$$
\int_{(0, t]} \mathbf{1}_{[0, v]} X d M=\int_{(0, v \wedge t]} X d M
$$

and

$$
\int_{(0, t]} \mathbf{1}_{(u, v]} X d M=(X \cdot M)_{v \wedge t}-(X \cdot M)_{u \wedge t}=\int_{(u \wedge t, v \wedge t]} X d M
$$

3. For $s<t$ we have a condition form of the isometry:

$$
\mathbb{E}\left[\left((X \cdot M)_{t}-(X \cdot M)_{s}\right)^{2} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[\int_{(s, t]} X_{u}^{2} d[M]_{u} \mid \mathcal{F}_{s}\right]
$$

Theorem 47 (Proposition 5.19). Let $M, N \in \mathcal{M}_{2}, \alpha, \beta \in \mathbb{R}$, and $X \in \mathcal{L}_{2}(M, P) \cap$ $\mathcal{L}_{2}(N, P)$. Then $X \in \mathcal{L}_{2}(\alpha M+\beta N, P)$ and

$$
X \cdot(\alpha M+\beta N)=\alpha(X \cdot M)+\beta(X \cdot N)
$$

8 Stochastic Integration

8.1 Step 4 and 5

Last time we considered $M \in \mathcal{M}_{2}^{C}$, the continuous L^{2}-martingale and $(X \cdot M) \in$ \mathcal{M}_{2}^{C} for $X \in \mathcal{L}^{2}(M)$.
Here $X \in \mathcal{L}_{2}(M) \Longleftrightarrow \forall T<\infty X \in L^{2}\left((0, T) \times \Omega, \mathrm{d} \mu_{M}\right)$
Theorem 48 (Proposition 5.16).

$$
\left(\left(\mathbf{1}_{[0, \tau]} X\right) \cdot M\right)_{t}=(X \cdot M)_{\tau \wedge t}=\left(X \cdot M^{\tau}\right)_{t}
$$

Today we only want to assume;

- $M \in \mathcal{M}_{2, \text { loc }^{C}}$
- $X \in L^{2}((0, T),[M])$ almost surely for all $T<\infty$
but the problem is that there is no integrability in Ω.
Example 15. $X_{t}=e^{B_{t}^{4}}, M=X \cdot B$ should exist and what is M ? And what about $(Y \cdot M)_{t}$?

Recall that $M \in \mathcal{M}_{2, \text { loc }}^{C} \Longleftrightarrow$ there exists a localizing sequence $\sigma_{k} \uparrow \infty$ such that $M^{\sigma_{k}} \in \mathcal{M}_{2}^{C}$

Definition 32. Let $M \in \mathcal{M}_{2, \text { loc }}^{C}$. We say $X \in \mathcal{L}(M, P)$ if X is predictable and there exists stopping times $0 \leq \tau_{1} \leq \tau_{2} \leq \ldots$ such that

1. $P\left(\lim _{k \rightarrow \infty} \tau_{k}=\infty\right)=1$
2. $M^{\tau_{k}} \in \mathcal{M}_{2}^{C}$ for all k
3. $\mathbf{1}_{\left[0, \tau_{k}\right]} X \in \mathcal{L}\left(M^{\tau_{k}}, P\right.$ for all k.

In this case $\left(\tau_{k}\right)$ is called a localizing sequence for $(X \cdot M)$.
Remark: $\mathbf{1}_{\left[0, \tau_{k}\right]}$ is predictable, because it is adapted and left-continuous.
Now the idea is to define $(X \cdot M)$ locally:

$$
Y^{k}=\left(\mathbf{1}_{\left[0, \tau_{k}\right]} X \cdot M^{\tau_{k}}\right)
$$

and let $k \rightarrow \infty$. Here k is an index.
Theorem 49 (Lemma 5.22). $M \in \mathcal{M}_{2, l o c}^{C}$, X predictable. If τ, σ are stopping times such that $M^{\sigma}, M^{\tau} \in \mathcal{M}_{2}^{C}$ and $\mathbf{1}_{[0, \sigma]} X \in \mathcal{L}_{2}\left(M^{\sigma}\right), \mathbf{1}_{[0, \tau]} X \in \mathcal{L}_{2}\left(M^{\tau}\right)$. Define :

$$
Z_{t}:=\int_{(0, t]} \mathbf{1}_{(0, \sigma]} X d M^{\sigma}, \quad W_{t}:=\int_{(0, t]} \mathbf{1}_{(0, \tau]} X d M^{\tau}
$$

then $Z^{\sigma \wedge \tau}=W^{\sigma \wedge \tau}$ where we mean that the two processes are indistinguishable. By lemma 5.22 we have that $\forall k, m \in \mathbb{N}$ almost surely and $\forall t \geq 0$

$$
\begin{equation*}
Y_{t \wedge \tau_{k} \wedge \tau_{m}}^{k}=Y_{t \wedge \tau_{k} \wedge \tau_{m}}^{m} \tag{3}
\end{equation*}
$$

Now let $\Omega_{0}=\left\{\omega \in \Omega: \lim _{k \rightarrow \infty}=\infty, \forall k, m \in \mathbb{N}, \forall t \geq 0\right.$ (3) holds. $\}$. Then $P\left(\Omega_{0}\right)=1$ by countability of $\mathbb{N} \times \mathbb{N}$.

Definition 33. Let $M \in \mathcal{M}_{2, \text { loc }}^{C}, X \in \mathcal{L}(M, P)$ and $\left(\tau_{k}\right)$ a localizing sequence for (X, M).
Now define the stochastic integral $\forall \omega \in \Omega_{0},(X \cdot M)_{t}(\omega)=Y_{t}^{k}(\omega), t \leq \tau_{k}(\omega)$ and $X \cdot M=0$ for $\omega \notin \Omega_{0}$

Remarks:

- The stochastic integral is well defined since $\tau_{k}(\omega) \rightarrow \infty$ and if $t \leq \tau_{k}(\omega) \wedge$ $\tau_{m}(\omega)$, then

$$
Y_{t}^{k}(\omega)=Y_{t \wedge \tau_{k} \wedge \tau_{m}}^{k}(\omega)=Y_{t \wedge \tau_{k} \wedge \tau_{m}}^{m}(\omega)=Y_{t}^{m}(\omega)
$$

- $(X \cdot M)_{t}^{\tau_{k}}=(X \cdot M)_{t \wedge \tau_{k}}=Y_{\tau_{k} \wedge t}^{K}=\left(Y^{k}\right)_{t}^{\tau_{k}}$ which is in M_{2}^{C}. Thus $X \cdot M \in \mathcal{M}_{2, \text { loc }}^{C}$ with localizing sequence τ_{k}
- If we would use another localizing sequence $\left(\sigma_{j}\right)_{j \geq 1}$ for (X, M), this would yield the same $(X \cdot M)$ by lemma 5.22

Example 16 (Example 5.26). Let B be a Brownian Motion, then

$$
X \in \mathcal{L}(B, P) \Longleftrightarrow X \text { predictable and } \forall T<\infty, \text { a.s. } \int_{0}^{T}|X(t, \omega)|^{2} \mathrm{~d} t<\infty
$$

Theorem 50 (Corollary 5.29). Let $M \in \mathcal{M}_{2, \text { loc }}^{C}$ and X continuous and adapted then $X \in \mathcal{L}(M, P)$ and hence $X \cdot M$ is well-defined

Proof. Define $\sigma_{k}:=\inf \left\{t \geq 0 ;\left|X_{t}\right| \geq k\right\}$ and $\tau_{k}:=\inf \left\{t \geq 0:\left|M_{t}\right| \geq k\right\}$. Now $\sigma_{k} \wedge \tau_{k}$ is a localizing sequence for $(X \cdot M)$

Standard properties of L^{2}-integral extend to the localized setting:

- Linearity continues to hold
- Interchanging stopping times, if $X \in \mathcal{L}(M), Y \in \mathcal{L}(N), \tau$ a stopping time. If almost surely $X_{t}(\omega)=Y_{t}(\omega)$ and $M_{t}(\omega)=N_{t}(\omega)$ for $t \leq \tau(\omega)$ then $(X \cdot M)_{t \wedge \tau}=(Y \cdot N)_{t \wedge \tau}$

Theorem 51 (Proposition 5.32). Let $M \in \mathcal{M}_{2, \text { loc }}^{C}$ and X be continuous and predictable. Now assume that for all $n \in \mathbb{N} 0 \leq \tau_{0}^{n} \leq \tau_{1}^{n} \leq \ldots$ are stopping times such that almost surely $\delta_{n}=\sup _{i} \tau_{i+1}^{n}-\tau_{i}^{n} \rightarrow 0$ if $n \rightarrow \infty$.
Define $R_{n}(t)=\sum_{i=0}^{\infty} X\left(\tau_{i}^{n}\right)\left(M\left(\tau_{i+1}^{n} \wedge t\right)-M\left(\tau_{i}^{n} \wedge t\right)\right)$, then $R_{n} \rightarrow X \cdot M$ uniform, in probability on compact time intervals.

8.2 Semimartingale integrators

Let Y be a continuous semimartingale, $Y_{t}=Y_{0}+M_{t}+V_{t}$ with $M_{0}=V_{0}=0$. Technical condition: there exist stopping times σ_{n} such that $\forall n \in \mathbb{N}: \mathbf{1}_{\left(0, \sigma_{n}\right)} X$ is bounded, where X_{0} is not relevant.

Definition 34. Let Y be a semimartingale and let X be a predictable process for which the technical condition is satisfied. Then we define the integral of X with respect to Y as the process

$$
\int_{(0, t]} X \mathrm{~d} Y=\underbrace{\int_{(0, t]} X \mathrm{~d} M}_{\text {Stochastic integral in } \mathcal{M}_{2, \text { loc }}^{C}}+\underbrace{\int_{(0, t]} X \mathrm{~d} \Lambda_{v}(\mathrm{~d} s)}_{\text {Stieltjes integral for fixed } \omega}
$$

Thus $X \cdot Y$ is a semimartingale again.
By the next lemma the decomposition of Y is unique, thus the stochastic integral is well defined. The well-definedness follows from the uniqueness of decomposition for continuous semimartingales $Y_{t}=Y_{0}+M_{t}+V_{t}=Y_{0}+N_{t}+W_{t}$. Thus $M_{t}-N_{t} \in \mathcal{M}_{2, \text { loc }}^{C}=W_{t}-V_{t}$. By the next result we show that $M_{t}=N_{t}$ and $W_{t}=V_{t}$.

Theorem 52 (Lemma). If $M \in \mathcal{M}_{2, \text { loc }}^{C}$ has finite variation, then $M=M_{0}$
Rest of 5.3 is selfstudy Proposition 5.36 is not needed because of the above lemma. Non-continuous case is to complicated for this lecture.

9 Itô's lemma

9.1 Quadratic Covariation

The lecture starts with repeating some information about quadratic covariation. I have not reposted the old results, but here are the new results:
When the Quadratic Covariation (QCV) exists it behaves like an innerproduct

$$
[\alpha X+\beta Y, Z]=\alpha[X, Z]+\beta[Y, Z]
$$

Theorem 53 (Lemma 5.54). M_{n}, M, N_{n}, N are L^{2}-martingales and $0 \leq T<$ ∞. Furthermore suppose that $M_{n}(T) \rightarrow M(T)$ and $N_{n}(T) \rightarrow N(T)$ in L^{2}.
Then $\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|\left[M_{n}, N_{n}\right]_{t}-[M, N]_{t}\right|\right] \rightarrow 0$ as $n \rightarrow \infty$
Theorem 54. Let $M, N \in \mathcal{M}_{2, \text { loc }}, G \in \mathcal{L}(M, P), H \in \mathcal{L}(N, P)$.
Then $[G \cdot M, H \cdot N]_{t}=\int_{(0, t]} G_{s} H_{s} d[M, N]_{s}$

9.2 Change of integrator/Substitution rule

Theorem 55 (Proposition 5.58). Let $M \in \mathcal{M}_{2, \text { loc }}, G \in \mathcal{L}(M, P)$. We already know that $N:=G \cdot M \in \mathcal{M}_{2, \text { loc }}$. Let $H \in \mathcal{L}(N, P)$. Then $H G \in \mathcal{L}(M, P)$ and $H \cdot N=(H G) \cdot M$

Theorem 56 (Corollary 5.59). Let Y be a cadlag semimartingale and H be predictable satisfying (5.66): there exists a sequence (σ_{N}) with $\sigma_{n} \uparrow \infty$ a.s. such that $\mathbf{1}_{\left(0, \sigma_{n}\right]} H$ is bounded for each n.
We know that $X=H \cdot Y$ is a cadlag semimartingale. Let G be predictable satisfying (5.66), then $\int G d X=\int G H d Y$

Theorem 57 (Theorem 5.62). Let Y, Z be cadlag semimartingales. G, H predictable satisfying (5.66). Then $[G \cdot Y, H \cdot Z]_{t}=\int_{(0, t])} G_{s} H_{s} d[Y, Z]_{t}$

Theorem 58 (Proposition 5.63). Let Y, Z be continuous semimartingales and G an adapted, continuous process. Let $\pi=\left\{0=t_{0}<t_{1}<t_{2}<\ldots, t_{i} \uparrow \infty\right\}$ a partition of $[0, \infty)$.
Then $R_{t}(n)=\sum_{i=1}^{\infty} G_{t_{i}}\left(Y_{t_{i+1} \wedge t}-Y_{t_{i} \wedge t}\right)\left(Z_{t_{i+1} \wedge t}-Z_{t_{i} \wedge t}\right)$ converges to $\int_{0}^{t} G_{s} d[Y, Z]_{s}$ as $\operatorname{mesh}(\pi) \rightarrow 0$
This is what we call convergence in probability uniformly on compact intervals.
Theorem 59 (Theorem 5.60). Let Y, Z be continuous semimartingales, then $[Y, Z]$ exists as continuous adapted $F V$ process and:

1. $[Y, Z]_{t}=Y_{t} Z_{t}-Y_{0} Z_{0}-\int_{0}^{t} Y_{s} d Z_{s}-\int_{0}^{t} Z_{s} d Y_{s}$ which is the stochastic version of integration by parts.
2. $Y Z$ is continuous semimartingale.
3. For continuous $H \int_{0}^{t} H_{s} d(Y Z)_{s}=\int_{0}^{t} H_{s} Y_{S} d Z_{s}+\int_{0}^{t} H_{s} Z_{s} d Y_{s}+\int_{0}^{t} H_{s} d[Y, Z]_{s}$

9.3 Itô's lemma

Theorem 60 (Theorem 6.1.0). Let $0<T<\infty$ and :

1. $f \in C^{2}(\mathbb{R})$, i.e. has a continuous 2nd derivative.
2. Y is a continuous semimartingale with quadratic variation $[Y]$

Then,

$$
f\left(Y_{t}\right)=f\left(Y_{0}\right)+\int_{0}^{t} f^{\prime}\left(Y_{s}\right) d Y_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(Y_{s}\right) d[Y]_{s} \quad \forall 0 \leq t \leq T
$$

Both sides are continuous processes and ${ }^{\prime}={ }^{\prime}$ means that both sides are indistinguishable on $[0, T]$, i.e., $\exists \Omega_{0}, P\left(\Omega_{0}\right)=1$ such that $\forall \omega \in \Omega_{0}$ the equality holds for all $0 \leq t \leq T$.

Generalizations of theorem 6.1
2* Y is cadlag instead of continuous. Then the integrals become: $\int_{0}^{t} f^{\prime}\left(Y_{s-}\right) \mathrm{d} Y_{s}+$ $\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(Y_{s-}\right) \mathrm{d}[Y]_{s}$. An extra term/sum involving the jumps is needed:

$$
\sum_{s \in(0, t]}\left\{f\left(Y_{s}\right)-f\left(Y_{s-}\right)-f^{\prime}\left(Y_{s-}\right) \Delta Y_{s}-\frac{1}{2} f^{\prime \prime}\left(Y_{s-}\right)\left(\Delta Y_{s}\right)^{2}\right\}
$$

where the sum converges absolutely for a.e. ω. All processes are now cadlag instead of continuous.

1* $f \in C^{2}(D)$ where D is open in \mathbb{R}. We now need that $Y[0, T] \subseteq D$
3* Note that 1^{*} and 2^{*} combined is not enough for the theorem.
Remark 6.2: $f\left(Y_{t}\right)$ is a continuous semimartingale.
Theorem 61 (Corollary 6.3). (b) If Y is of bounded variation on $[0, T]$ and continuous then $f\left(Y_{t}\right)=f\left(Y_{0}\right)+\int_{0}^{t} f^{\prime}\left(Y_{s}\right) d Y_{s}$. This is the regular, nonstochastic integration theory.
(c) If $Y_{t}=Y_{0}+B_{t}$, where B is a standard Brownian Motion independent of Y_{0} then

$$
f\left(B_{t}\right)=f\left(Y_{0}\right)+\int_{0}^{t} f^{\prime}\left(Y_{0}+B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(Y_{0}+B_{S}\right) d s
$$

9.4 Itô's formula in time and space

Theorem 62 (Theorem 6.1.1). Let $0<T<\infty, f \in C^{1,2}([0, T], \mathbb{R})$ i.e. $f(t, x)$ is continuous differentiable in 1st variable and twice continuous differentiable in the 2nd varbiable. Furthermore Y is a continuous semimartingale with quadratic variation $[Y]$. Then:
$f(t, Y(t))=f(0, Y(0))+\int_{0}^{t} f_{t}(s, Y(s)) d s+\int_{0}^{t} f_{x}(s, Y(s)) d Y(s)+\frac{1}{2} \int_{0}^{t} f_{x x}(s, Y(s)) d[Y]_{s}$

We now generalize this theory to the d-dimension vector valued variant.
Theorem 63 (Theorem 6.5). Let $0<T<\infty, f \in C^{1,2}([0, T], D)$ where D is open in \mathbb{R}^{d}. Furthermore Y is \mathbb{R}^{d}-valued and a continuous semimartingale such that $\overline{Y([0, T])} \subseteq D$ almost surely. Then:

$$
\begin{aligned}
& f(t, Y(t))=f(0, Y(0))+\int_{0}^{t} f_{t}(s, Y(s)) d s+\sum_{i=1}^{d} \int_{0}^{t} f_{x_{i}}(s, Y(s)) d Y(s) \\
&+\frac{1}{2} \sum_{1 \leq i, j \leq d} \int_{0}^{t} f_{x_{i} x_{j}}(s, Y(s)) d\left[Y_{i}, Y_{j}\right](s)
\end{aligned}
$$

Short hand notation:

$$
\begin{aligned}
\mathrm{d} f(t, Y(t))= & f_{t}(t, Y(t)) \mathrm{d} t+\sum_{i=1}^{d} f_{x_{i}}(t, Y(t)) \mathrm{d} Y(t) \\
& +\frac{1}{2} \sum_{1 \leq i, j \leq d} f_{x_{i} x_{j}}(t, Y(t)) \mathrm{d}\left[Y_{i}, Y_{j}\right](t)
\end{aligned}
$$

We have the special case that $Y(t)=B(t)=\left(B_{1}(t), \ldots, B_{d}(t)\right)$, the d-dimensional Brownian Motion. Notation:

- $f \in C^{1,2}\left(\left([0, T] \times \mathbb{R}^{d}\right)\right.$
- $\nabla_{x} f=\left(f_{x_{1}}, \ldots, f_{x_{d}}\right)$ the gradient vector
- $\Delta_{x} f=\nabla_{x} \cdot \nabla_{x} f=\sum_{i=1}^{d} f_{x_{i}, x_{i}}$, the Laplacian

Theorem 64 (Corollary 6.7). Let $B(t)$ be d-dimensional Brownian Motion, $f \in C^{1,2}\left([0, T] \times \mathbb{R}^{d}\right)$
Then

$$
\begin{aligned}
& f(t, B(t))=f(0, B(0))+\int_{0}^{t}\left(f_{t}\left(s, B(s)+\frac{1}{2} \Delta_{x} f(s, B(s))\right) d s\right. \\
&+\int_{0}^{t} \nabla_{x} f(s, B(s)) d B(s)
\end{aligned}
$$

10 Itô's formula

The continuous semimartingale class is preserved after transformation of $f(t, Y(t)$. This may not be the case if we work with martingales.
For $f \in C^{1}(\mathbb{R})$ such that $F(x)=\int_{0}^{x} f(y) \mathrm{d} y$ we have that $\int_{0}^{t} f\left(B_{s}\right) \mathrm{d} B_{s}=$ $F\left(B_{t}\right)-\frac{1}{2} \int_{0}^{t} f^{\prime}\left(B_{s}\right) \mathrm{d} s$, which is the path-wise interpretation.
The short hand notation is $\mathrm{d} f\left(B_{t}\right)=f^{\prime}\left(B_{t}\right) \mathrm{d} B_{t}+\frac{1}{2} f^{\prime \prime}\left(B_{t}\right) \mathrm{d} t$. This notation has no meaning, only through the integrated version.
Application of Itô formula: Beautiful and useful results can be derived from special choices of f.

Preservation of Martingale property

Suppose that $Y(t)$ is continuous martingale and $f \in C^{1,2}([0, T] \times \mathbb{R})$.
Ito: $f(t, Y(t))=f(0, Y(0))+\int_{0}^{t}\left(f_{t}+\frac{1}{2} f_{x x}\right)(s, Y(s)) \mathrm{d}[Y]_{s}+\int_{0}^{t} f_{x}(s, Y(s)) \mathrm{d} Y(s)$. If 2 nd term on the right hand side is zero, then it is at least a local martingale. When is $\int_{0}^{t} f_{x}(s, Y(s)) \mathrm{d} Y(s)$ a martingale? One sufficient condition is for example, Y is continuous L^{2}-martingale and $f_{x}(s, Y(s)) \in \mathcal{L}_{2}(M, P)$.

Theorem 65 (Lemma 6.9). Suppose $f \in C^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ and $f_{t}+\frac{1}{2} f_{x x}=0$. Let B_{t} be a one-dimensional standard Brownian Motion. Then $f\left(t, B_{t}\right)$ is local L^{2}-martingale. If further $\int_{0}^{T} \mathbb{E}\left[f_{x}^{2}\left(t, B_{t}\right)\right] d t<\infty$ then $f\left(t, B_{t}\right)$ is an L^{2} martingale on $[0, T]$
This lemma can be extended to the d-dimensional Brownian Motion. When is a local martingale a martingale?

Exercise 3.7 X a nonnegative local martingale with $\mathbb{E}\left[X_{0}\right]<\infty . X$ is a martingale $\Longleftrightarrow \mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[X_{0}\right]$ for all $t>0$

Exercise 3.8 M is a right-continous local martingale and $M_{t}^{*} \in L^{1}(P)$ then M is a martingale

Corollary A continuous local martingale which is bounded a.s. is a martingale.
Example 17. Some applications of Lemma 6.9:

- $f(t, x)=x^{2}-t \Rightarrow B_{t}^{2}-t$ is a martingale.
- $f(t, x)=e^{\alpha x-\frac{1}{2} \alpha^{2} t}$ then $f_{x}=\alpha f, f_{x x}=\alpha^{2} f$ and $f_{t}=-\frac{1}{2} \alpha^{2} f=-\frac{1}{2} f_{x x}$ and therefore $e^{\alpha B_{t}-\frac{1}{2} \alpha^{2} t}$ is a martingale.

Example 18 (Exit time of Brownian Motion with drift.). We have $X_{t}=\mu t+$ σB_{t} with $\mu \in \mathbb{R}, \sigma \in \mathbb{R}, \sigma \neq 0 . \tau=\inf \left\{t>0: x_{t}=a\right.$ or $\left.x_{t}=b\right\}$ where $a<0, b>0$.
What is $P\left(X_{\tau}=b\right)$?
Propositions 6.11 and 6.12 are about recurrent/transience properties of Brownian Motion.

- One dimensional BM is (point) recurrent.
- Two dimensional BM is not point recurrent, but neighbourhood recurrent.
- d-dimensional $\mathrm{BM}(d \geq 3)$ is transient.

Theorem 66 (Theorem 6.14). Let M be a continuous \mathbb{R}^{d}-valued local martingale and $X(t)=M(t)-M(0)$ such that $X(0)=0$. Then X is a standard Brownian Motion relative to \mathcal{F}_{t} iff $\left[x_{i}, X_{j}\right](t)=\delta_{i, j} t$ in particual X is independent of \mathcal{F}_{0}

10.1 SDEs

Recall ordinary differential equations (ODE). For example it may be of the form $\dot{x}=f(t, x)$, equivalently $\mathrm{d} x(t)=f(t, x(t)) \mathrm{d} t$.
SDE: The stochastic variant will involve in the simplest case a $\mathrm{d} B_{t}$ term. For example, $\mathrm{d} X_{t}=\mu\left(t, X_{t}\right) \mathrm{d} t+\sigma\left(t, X_{t}\right) \mathrm{d} B_{t}$.
We have seen earlier this type of equations as short hand notation for Ito formula. But there given $X_{t}=f\left(t, B_{t}\right)$ we derived this short hand notation for-

mula.

Now we have to do the reverse. Given this 'formula'/SDE, does there exist a process X_{t} which satisfy this equation? Recall that this short-hand notation must be interpreted through integral form. That is still the case.

Definition 35. Let (Ω, \mathcal{F}, P) be a complete filtered probability space, and $\left(B_{t}\right)$ is a standard Brownian motion defined on it. Suppose $\mu, \sigma:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ are measurable and η is an \mathcal{F}_{0}-measurable random variable. A stochastic process $\left(X_{t}\right), t \in[0, T]$ defined on (Ω, \mathcal{F}, P) is called a strong solution of the SDE: $\mathrm{d} X_{t}=\mu\left(t, X_{t}\right) \mathrm{d} t+\sigma\left(t, X_{t}\right) \mathrm{d} B_{t}$ with initial condition $X_{0}=\eta$ if the following assertions are true:

1. X_{t} is continuous and \mathcal{F}_{t}-adapted
2. $\int_{0}^{T}\left|\mu\left(t, X_{t}\right)\right| \mathrm{d} t+\int_{0}^{T}\left|\sigma\left(t, X_{t}\right)\right|^{2} \mathrm{~d} t<\infty$ almost surely.
3. For each $t \in[0, T]: X_{t}=\eta+\int_{0}^{t} \mu\left(s, X_{s}\right) \mathrm{d} s+\int_{0}^{t} \sigma\left(s, X_{s}\right) \mathrm{d} B_{S}$ almost surely.

Note that condition 2. assures that the integrals in 3. are well defined.
So given an SDE questions are about existence of a solution, if it exists, then uniqueness of it; and not unimportant, the properties of the solutions.
In an SDE: $\mathrm{d} X_{t}=\mu\left(t, X_{t}\right) \mathrm{d} t+\sigma\left(t, X_{t}\right) \mathrm{d} B_{t}, \mu$ is called drift/instantaneous growth term and σ^{2} is called the diffusion coefficient/instantaneous variance.

Example 19 (7.3). Consider the $\operatorname{SDE~} \mathrm{d} X_{t}=\mu X_{t} \mathrm{~d} t+\sigma X_{t} \mathrm{~d} B_{t}$ with $X_{0}=x_{0} \in$ \mathbb{R}.
Let's see if $X_{t}=f\left(t, B_{t}\right)$ can be a solution to such SDE.
Applying Itô formula to $f\left(t, B_{t}\right)$ we have,

$$
\mathrm{d}\left[f\left(t, B_{t}\right)\right]=\left[f_{t}\left(t, B_{t}\right)+\frac{1}{2} f_{x x}\left(t, B_{t}\right)\right] \mathrm{d} t+f_{x}\left(t, B_{t}\right) \mathrm{d} B_{t}
$$

so if there exists f such that

$$
f_{t}+\frac{1}{2} f_{x x}=\mu \cdot f \text { and } f_{x}=\sigma f
$$

then $X_{t}=f_{t}\left(t, B_{t}\right)$ will be a solution.
$f_{x}=\sigma f \Rightarrow f(t, x)=g(t) e^{\sigma x}$ where g is some function of t only. Plugging this into the 1st expression yields: $\frac{g^{\prime}(t)}{g(t)} f+\frac{\sigma^{2}}{2} f=\mu f$. So if there exists a $g(t)$ such that $\frac{g^{\prime}}{g}=\frac{1}{2} \sigma^{2}-\mu$ then it will do.

But $\frac{g^{\prime}}{g}=\mu-\frac{1}{2} \sigma^{2} \Rightarrow g=c e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t}$ where c is the integration constant. So $f(t, x)=c e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma x}$. Now consider $X_{t}=f\left(t, B_{t}\right)=c e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}}$. It is not difficult (using Itô) that all conditions in the definition of a solution are satisfied.
To make sure that initial condition is satisfied one needs $c=x_{0}$. hence the complete solution is $X_{t}=x_{0} e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}}$.
If X_{0} was a random variable η (which must be \mathcal{F}_{0}-measurable and hence independent of $\left.\left(B_{t}\right)_{t>0}\right)$ then $X_{t}=\eta e^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}}$
This is one solution, are there any other solutions? That would be answered with no via a general result

Properties

$\mathbb{E}\left[X_{t}\right]=\mathbb{E}[\eta] e^{\mu t}$ which grows exponentially assuming that $\mathbb{E}[\eta] \neq 0$, but $X_{t}=$ $\eta e^{t\left(\left(\mu-\frac{1}{2} \sigma^{2}\right)+\sigma \frac{B_{t}}{t}\right.}$. The strong law of large numbers says that $\frac{B_{t}}{t} \rightarrow 0$ a.s. thus if $\left(\mu-\frac{1}{2} \sigma^{2}\right)<0$ then $X_{t} \rightarrow 0$ a.s. as $t \rightarrow \infty$.

Here is another example of a sequence of random variables which converges to 0 a.s. but is expectations converge to ∞.

Example 20 (7.2 (Ornstein Uhlenbeck process).

$$
\mathrm{d} X_{t}=-\alpha X_{t} \mathrm{~d} t+\sigma \mathrm{d} B_{t} \quad X_{0}=x_{0}
$$

Show that a solution of the form $X_{t}=f\left(t, B_{t}\right)$ does not exist.
So we need to use a different technique. Multiply both sides by the integrating factor $Z_{t}=e^{\alpha t}$. Then apply Itô formula to $(Z X)_{t}$ to obtain the solution:

$$
X_{t}=x_{0} e^{-\alpha t}+\int_{0}^{t} \sigma e^{-\alpha(t-s)} \mathrm{d} B_{s}
$$

11 Applications of Itô's formula

Brownian Bridge(Example 7.4) For fixed $0<t<1$:

$$
\mathrm{d} X_{t}=-\frac{X_{t}}{1-t} \mathrm{~d} t+\mathrm{d} B_{t} \text { with } X_{0}=x_{0}
$$

has the solution $X_{t}=x_{0}+e^{-\alpha t}+\sigma(1-t) \int_{0}^{t} \frac{1}{1-s} \mathrm{~d} B_{s}$. X_{t} is defined on $[0,1)$ and $X_{t} \rightarrow 0$ as $t \uparrow 1 . X_{t}$ is a Brownian motion conditioned at the end $(t=1)$ to be also zero.
$X_{t}=B_{t}-t B_{1}$ is also a Brownian bridge
Theorem 67 (Theorem 7.8). Consider the $S D E$ on the given space (Ω, \mathcal{F}, P) :

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d B_{t}, t \in[0, T] ; X_{0}=\xi \in \mathcal{F}_{0}
$$

Suppose the coefficients b and σ satisfy the Lipschitz condition:

$$
|b(t, x)-b(t, y)|^{2}+|\sigma(t, x)-\sigma(t, y)|^{2} \leq L|x-y|^{2}
$$

for some constant $L>0$ and the spatial Growth condition

$$
|b(t, x)|^{2}+|\sigma(t, x)|^{2} \leq L\left(1+|x|^{2}\right)
$$

Then there exists a continuous, adapted process X which is a solution of the SDE. Furthermore, the process X is unique up to indistinguishability, i.e. if X_{t} and Y_{t} are both solutions of the SDE then $P\left(X_{t}=Y_{t}\right.$ for allt $\left.\in[0, T]\right)=1$

Some useful results are listed below:
Theorem 68 (Gronwall's Lemma (Lemma A.20)). Let g be an integrable Borel function on $[a, b]$ and f a non-decreasing function on $[a, b]$. Suppose there is a constant c such that

$$
g(t) \leq f(t)+c \int_{a}^{t} g(s) d s \quad \forall t \in[a, b]
$$

Then $g(t) \leq f(t) e^{c(t-a)}$
Theorem 69 (Doob's maximum inequality). For square integrable continuous martingale M, and $0<T<\infty$

$$
\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|M_{t}\right|^{2}\right] \leq 4 \mathbb{E}\left[\left|M_{T}\right|^{2}\right]
$$

Theorem 70 (Theorem 7.12). Suppose ξ, η are \mathcal{F}_{0}-measurable random variables. Assume b and σ satisfy the Lipschitz condition. Suppose X and Y are solutions to the same SDE with coefficients b and σ but with possibly different initial values ξ and η, respectively. Then X and Y are indistinguishable, on the event $\{\xi=\eta\}$, i.e., $P\left(\left(X_{t}-Y_{t}\right) \mathbf{1}_{\{\xi=\eta\}}=0, \forall t \in[0, T]\right)=1$

Now a very long proof of this theorem followed, which I think is not relevant.

Theorem 71 (Theorem 7.14). Suppose b and σ are continuous functions of (t, x) satisfying the growth and Lipschitz conditions.
Let X be the strong solution of the SDE with coefficients b and σ (and with \mathcal{F}_{0}-measurable ξ as initial value) on the filtered probability space (Ω, \mathcal{F}, P) with B a Brownian motion on it.
Let \tilde{X} be the strong solution corresponding to the SDE with same coefficients b and σ but corresponding to $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P}), \tilde{B}, \tilde{\xi}$.
Suppose $\xi=\tilde{\xi}$ in distribution.
Then the processes X and \tilde{X} have the same probability distribution. I.e., for any measurable set A of $C_{\mathbb{R}^{d}}[0, T], P(X \in A)=\tilde{P}(\tilde{X} \in A)$

In the absence of the growth and Lipschitz conditions one may not always be able to find a (strong) solution defined on the given probability space (Ω, \mathcal{F}, P) It is however, sometimes possible to define/construct

1. Another (filtered) probability space $\left(\Omega^{*}, \mathcal{F}^{*}, P^{*}\right)$
2. An $\mathrm{SBM} B_{t}^{*}$ on the new filtered space
3. An \mathcal{F}_{0}-measurable ξ^{*} with probability distribution same as that of ξ
4. A continuous adapted process X_{t}^{*} w.r.t. the new filtered space such that

$$
\int_{0}^{T}\left|b\left(t, X_{t}^{*}\right)\right| \mathrm{d} t+\int_{0}^{T}\left|\sigma\left(t, X_{t}^{*}\right)\right|^{2} \mathrm{~d} t<\infty
$$

and

$$
X_{t}^{*}=\xi^{*}+\int_{0}^{t} b\left(s, X_{s}^{*}\right) \mathrm{d}+\int_{0}^{t} \sigma\left(s, X_{s}^{*}\right) \mathrm{d} B_{s}^{*}
$$

Then $\left(\Omega^{*}, \mathcal{F}^{*}, P^{*}, \xi^{*},\left(B_{t}^{*}\right),\left(X_{t}^{*}\right)\right)$ is called the weak solution of the SDE

$$
\mathrm{d} X_{t}=b\left(t, X_{t}\right) \mathrm{d} t+\sigma\left(t, X_{t}\right) \mathrm{d} B_{t}
$$

12 Girsanov's theorem

The main question of this section is: "Can a stochastic process with drift be viewed as one without drift? Or be transformed into one?"

$$
X_{t}=\int_{0}^{t} \sigma_{s} \mathrm{~d} B_{s} \quad Y_{t}=\int_{0}^{t} \mu_{s} \mathrm{~d} s+\int_{0}^{t} \sigma_{s} \mathrm{~d} B_{s}
$$

Because X_{t} is a martingale, it is easier to analyze then Y_{t} !

Monte Carlo Integration

The Riemann sum is given by $\int_{0}^{1} f(x) \mathrm{d} x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$ for $x_{i}=\frac{i-1}{n}$. Monte Carlo integration is the same concept but now random variables are used to approximate the integral: $\int_{0}^{1} f(x) \mathrm{d} x \approx \frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)$ for $X_{i} \sim \operatorname{Unif}[0,1]$.
Now the Strong Law of Large Numbers yields that if X_{i} 's are i.i.d. with finite expectation μ, then $\frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{n \rightarrow \infty} \mathbb{E}[X]$ almost surely. Therefore we can approximate $\mathbb{E}[f(x)]$ by drawing large samples X_{1}, \ldots, X_{n} from the distribution of X and considering the sum $\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)$

$$
\int f(x) p(x) \mathrm{d} x=\mathbb{E}[f(x)] \approx \frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right), \quad X_{i} \sim p(x)
$$

In theory this is a very nice idea, but in practice it doesn't work for most cases. Let's see for example the case that we are interested in $P(X>30)$ for $X \sim$ $N(0,1)$. Then we can approximate this probability by $P(X>30)=\mathbb{E}[f(x)]$ for $f(x)=\mathbf{1}_{(30, \infty)}$ so that we have:

$$
P(X>30)=\mathbb{E}[f(X)] \approx \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(30, \infty)}, \quad X_{i} \sim N(0,1)
$$

If we define D to be the number of draws before the first hit $\left(x_{i}>30\right)$, then $\mathbb{E}[D]>10^{100}$. So in practice this approximation is quite useless.

Importance Sampling

For this problem importance sampling has been invented. By importance sampling we convert the problem so we can sample from more easy distributions:

$$
\begin{aligned}
& \int f(x) p(x) \mathrm{d} x=\int f(x) \frac{p(x)}{q(x)} q(x) \mathrm{d} x=\int g(x) q(x) \mathrm{d} x \\
& \mathbb{E}^{P}[f(X)]=\mathbb{E}^{Q}[g(X)]=\mathbb{E}^{Q}\left[f(X) \frac{p(X)}{q(X)}\right]
\end{aligned}
$$

In order to apply importance sampling fruitfully we need the ability to draw sample from density $q(x)$, the ability to calculate $\frac{p(x)}{q(x)}$ and $q(x)>0$ whenever $p(x)>0$ (or equivalently $q(x)=0 \Longleftrightarrow p(x)=0$)
If we get back to our previous example, for $p \sim N(0,1) ; q \sim N(\mu, 1)$ such that $p(x) / q(x)=e^{-\mu x+\frac{1}{2} \mu^{2}}$ and $P(X>30) \approx \frac{1}{n} \sum_{i=1}^{n}\left[\mathbf{1}_{\left\{X_{i}>30\right\}} e^{-\mu X_{i}+\frac{1}{2} \mu^{2}}\right]$, where $X_{i} \sim N(\mu, 1)$. So choosing a suitable value for μ improves the approximation.

Change of Measure

So if we have the same random variable, but we want a different probability distribution? In that we case we define them on different probability measures. Consider $\Omega=\mathbb{R}$ equipped with the Borel σ-algebra \mathcal{B} and a random variable $X: \Omega \rightarrow \mathbb{R}$ given by $X(\omega)=\omega$.
Consider probability measures on (Ω, \mathcal{B}), given by:

- $P_{1}((a, b])=(b \wedge 1) \vee 0-(a \wedge 1) \vee 0$
- $P_{2}((a, b])=\Phi(b)-\Phi(a)$

Under $P_{1}, X \sim U(0,1)$ and under $P_{2}, X \sim N(0,1)$
Now consider a probability space (Ω, \mathcal{F}, P) and a random variable X defined on it such that $X \sim N(0,1)$ under P. For some $\mu \in \mathbb{R}$, let $Z=e^{\mu X-\frac{1}{2} \mu^{2}}$, then $Z>0$ and $\mathbb{E}[Z]=1$. Define a new measure Q on $\left(\Omega, \mathcal{F}\right.$ by $Q(A)=\mathbb{E}\left[\mathbf{1}_{A} Z\right]$ for $A \in \mathcal{F}$. Now Q is a probability measure and under $Q, X \sim N(\mu, 1)$.

Theorem 72 (Girsanov Theorem). Suppose $\left(B_{t}\right)$ is a d-dimensional Brownian Motion defined on the complete filtered probability space $(\Omega, \mathcal{F}, P), 0<T<\infty$ is fixed and H is an adapted measurable \mathbb{R}^{d}-valued process such that $\int_{0}^{T}|H(t)|^{2} d t<$ ∞ almost surely under P.
Let $Z_{t}=Z_{t}(H)=\exp \left\{\int_{0}^{t} H(s) d B(s)-\frac{1}{2} \int_{0}^{t}|H(s)|^{2} d s\right\}$.

- Assume that $\left\{Z_{t}, t \in[0, T]\right\}$ is martingale. (Equivalent assumption: $\mathbb{E}\left[Z_{T}\right]=$ $\mathbb{E}^{P}\left[Z_{t}\right]=1$.)
- Define the probability measure $Q=Q_{T}$ on \mathcal{F}_{T} as $d Q=Z_{T} d P$
- Define the process $W(t)=B(t)-B(0)-\int_{0}^{t} H(s) d s$

Then $\{W(t), t \in[0, T]\}$ is a d-dimensional Brownian Motion on the probability space $\left(\Omega, \mathcal{F}_{T}, Q\right)$ w.r.t. the filtration $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$

Remark 1: $M_{t}=\int_{0}^{t} H(s) \mathrm{d} B_{s}$ is a continuous local martingale. Then Itô formula says that $Z_{t}=1+\int_{0}^{t} Z_{s} \mathrm{~d} M_{s}=1+\int_{0}^{t} Z_{s} H_{s} \mathrm{~d} B_{s}$ such that Z_{t} is a continuous local martingale.
Remark 2: $Z_{T} \geq 0 \Rightarrow Q$ is a positive measure and Z_{t} is martingale $\Rightarrow \mathbb{E}^{P}\left[Z_{T}\right]=$ $\mathbb{E}^{P}\left[Z_{0}\right]=1$ hence Q is a probability measure.

A Useful Observation

For $t \in \mathbb{R}_{+}$, define Q_{t} on $\left(\Omega, \mathcal{F}_{t}\right)$ as $\mathrm{d} Q_{t}=Z_{t} \mathrm{~d} P$. Suppose that Z_{t} is a martingale. Then the family of measure $\left\{Q_{t}\right\}$ satisfy certain consistency properties: Let $s<t$ and $A \in \mathcal{F}_{s} \subset \mathcal{F}_{t}$

$$
\begin{aligned}
Q_{t}(A) & =\mathbb{E}^{P}\left[\mathbf{1}_{A} Z_{t}\right]=\mathbb{E}^{P}\left[\mathbb{E}^{P}\left[\nVdash_{A} Z_{t} \mid \mathcal{F}_{s}\right]\right] \\
& =\mathbb{E}^{P}\left[\mathbf{1}_{A} \mathbb{E}^{P}\left[Z_{t} \mid \mathcal{F}_{s}\right]\right]=\mathbb{E}^{P}\left[\mathbf{1}_{A} Z_{s}\right] \\
& =Q_{s}(A)
\end{aligned}
$$

Example 21 (Application 1). Let B_{t} be a standard Brownian Motion; $\alpha<$ $0, \mu \in \mathbb{R}$ and σ : first time B_{t} hits the (space-time) line $a-\mu t$. What is the probability distribution of σ ?

- Define $X_{t}=B_{t}+\mu t$. Then $\sigma=\inf \left\{t \geq 0: B_{t}=a-\mu t\right\}=\inf \left\{t \geq 0 ; X_{t}=\right.$ a\}
- Use Girsanov's theorem with $H(s)=-\mu$ such that $Z_{t}=e^{-\mu B_{t}-\mu^{2} t / 2}$ and note that Z_{t} is indeed a martingale. Now $Q_{t}(A)=\mathbb{E}^{P}\left[\mathbf{1}_{A} Z_{t}\right]$. such that $\left\{X_{s}, 0 \leq s \leq t\right\}$ is a standard Brownian Motion under Q_{t}.
- Since $Z_{t}>0$, it holds that $P(A)=\mathbb{E}^{Q}\left[\mathbf{1}_{A} Z_{t}^{-1}\right]$, for $A \in \mathcal{F}\left[\mathrm{~d} Q_{t}=\right.$ $\left.Z_{t} \mathrm{~d} P \Leftrightarrow \mathrm{~d} P=Z_{t}^{-1} \mathrm{~d} Q_{t}\right]$ $Z_{t}^{-1}=e^{\mu B_{t}+\mu^{2} t / 2}=e^{\mu X_{t}-\mu^{2} t / 2}$

$$
\begin{aligned}
P(\sigma>t) & =P\left(\inf _{0 \leq s \leq t} X_{s}>a\right)=\mathbb{E}^{Q}\left[\mathbf{1}_{\left\{\inf _{0 \leq s \leq t} X_{s}>a\right\}} Z_{t}^{-1}\right] \\
& =\mathbb{E}^{Q}\left[\mathbf{1}_{\left\{\inf _{0 \leq s \leq t} X_{s}>a\right\}} e^{\mu X_{t}-\mu^{2} t / 2}\right] \\
& =e^{-\mu^{2} t / 2} \mathbb{E}^{Q}\left[\mathbf{1}_{\left\{\sup _{0 \leq s \leq t}\left(-X_{s}\right)<-a\right\}} e^{-\mu\left(-X_{t}\right)}\right] \\
& =e^{-\mu^{2} t / 2} \mathbb{E}^{P}\left[\mathbf{1}_{\left\{\sup _{0 \leq s \leq t} M_{t}<-a\right\}} e^{-\mu B_{t}}\right] \text { where } M_{t}=\sup _{0 \leq s \leq t} B_{t}
\end{aligned}
$$

- The joint distribution of $\left(B_{t}, M_{t}\right)$ is known.

Theorem 73 (Theorem 8.13). Suppose H is adapted, measurable with $\int_{0}^{T}|H(t)|^{2} d t<$ ∞ almost surely under P. The process $Z_{t}-\exp \left\{\int_{0}^{t} H(s) d B(s)-\frac{1}{2} \int_{0}^{t}|H(s)|^{2} d s\right\}$ (which is a positive local martingale, and hence a supermartingale) is martingale under any of the following conditions:

- $H(t)$ is non-random
- $\left((H(t))\right.$ and $\left(B_{t}\right)$ are mutually independent processes.
- $\{H(t), t \in[0, T]\}$ is bounded
- $\int_{0}^{T}|H(s)|^{2} d s \leq C<\infty$ almost surely
- Novikov conditon: $\mathbb{E}\left[e^{\frac{1}{2} \int_{0}^{T}|H(s)|^{2} d s}\right]<\infty$

Theorem 74 (Theorem 8.17). Let $0<T<\infty, b:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ Borel measurable and B_{t} a d-dimensional standard Brownian Motion. Consider the SDE:

$$
d X_{t}=b\left(t, X_{t}\right) d t+d B_{t} \quad \text { with } X_{0} \sim \nu
$$

If b is bounded, then the SDE has a weak solution for any initial distribution ν on \mathbb{R}^{d}

