Stochastic Differential Equations Summary

Romke Rozendaal 4094255

June 5, 2015

1 Measures, Integrals, and Foundations of Probability Theory

1.1 Measure theory and Integration

Definition 1. A family \mathcal{F} of subsets of Ω is called a σ -algebra if:

- 1. $\Omega \in \mathcal{F}$ and $\emptyset \in \mathcal{F}$
- 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
- 3. $A_1, A_2, \dots \in \mathcal{F} \to \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$

Example 1. Some examples of σ -algebra's:

- $\{\emptyset, \Omega\}$ is a trivial σ -algebra.
- The power set 2^{Ω} , which is the collection of all subsets of A is a σ -algebra.

Example 2. Given a family of sets A, there is a smallest σ -algebra which contains A. Notation: $\sigma(A)$, called the σ -algebra generated by A.

Example 3. The Borel σ -algebra of \mathbb{R}^d , (notation $\mathcal{B}(\mathbb{R}^d)$) is the σ -algebra generated by all open sets in \mathbb{R}^d .

Example 4. Let $f : \Omega \to \mathbb{R}$ be a function. Let $\{f \in B\} = \{\omega \in \Omega : f(\omega) \in B\}$. The collection $\mathcal{O}(f) := \{\{f \in B\} : B \in \mathcal{B}(\mathbb{R})\}\}$ is a σ -algebra in Ω . It is called the σ -algebra generated by f.

Let (Ω, \mathcal{F}) be a measurable space. $f : \Omega \to \mathbb{R}$ is called **measurable**/Borel **measurable** if $\forall B \in \mathcal{B}$ it holds that $\{f \in B\} \in \mathcal{F}$.

- Sums, product, etc. of measurable functions are measurable.
- Limits, countable suprema and infima are measurable.

Definition 2. A mapping: $\mu : f \to [0, \infty]$ is called a **measure** if

1. $\mu(\emptyset) = 0$

2. \forall disjoint $A_1, A_2, \dots \in \mathcal{F}$ then $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$

Caratheodory extension Theorem:

Definition 3. For a given set Ω , we may define a *ring* R as a subset of the powerset of Ω which has the following properties

- $\emptyset \in R$
- For all $A, B \in R$ we have $A \cup B \in R$
- For all $A, B \in R$ we have $A \setminus B \in R$

This theorem states that if there exists a measure μ on a ring R then there exists a measure μ^* on the sigma algebra of that ring such that μ^* is an extension of μ (That is, $\mu^*|_R = \mu$)

Dynkin uniqueness of measure

Definition 4. Let Ω be a nonempty set, and let D be a collection of subsets of Ω . Then D is a λ -system if

- 1. $\Omega \in D$
- 2. If $A, B \in D$ and $A \subseteq B$, then $B \setminus A \in D$.
- 3. If A_1, A_2, A_3, \ldots is a sequence of subsets in D and $A_n \subseteq A_{n+1}$ for all $n \ge 1$ then $\bigcup_{n=1}^{\infty} A_n \in D$

Equivalently, D is a π -system if

- 1. $\Omega \in D$
- 2. If $A \in D$ then $A^c \in D$.
- 3. If A_1, A_2, A_3, \ldots is a sequence of subsets in D and $A_i \cap A_j = \emptyset$ for all $i \neq j$ then $\bigcup_{n=1}^{\infty} A_n \in D$

An important fact is that a λ -system which is also a π -system (i.e. closed under finite intersection) is a σ -algebra.

Theorem 1 (Dynkin's $\pi - \lambda$ theorem). If P is a π -system and D is a λ -system with $P \subseteq D$ then $\sigma(P) \subseteq D$. In other words the σ -algebra generated by P is contained in D.

Completion of measure There are certain technical benefits to having the following property in a measure space (X, \mathcal{F}, μ) called *completion*: if $N \in \mathcal{F}$ satisfies $\mu(N) = 0$, then every subset of N is measurable and then of course has measure zero.

It turns out that this can always be arranged by a simple enlargement of the $\sigma\text{-algebra}.$ Let

 $\bar{\mathcal{F}} = \{F \in X : \text{ there exists } B, N \in \mathcal{F} \text{ and } F \subseteq N \text{ such that } \mu(N) = 0 \text{ and } A = B \cup F\}$

1.2 Lebesgue measure

There exists a measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ which satisfies $\mu([a_1, b_1) \times \cdots \times [a_d, b_d) = \prod_{n=1}^d (b_n - a_n).$

Integration: $f = \sum_{i} c_i \mathbf{1}_{A_i}$ then $\int f d\mu = \sum_{i} c_i \mu(A_i)$.

The power of Lebesgue-integration lies in the fact that one can prove convergence theorems such as monotone convergence and dominated convergence.

Theorem 2 (Monotone convergence theorem). Let f_n be nonnegative measurable functions, and assume $f_n \leq f_{n+1}$ almost everywhere, for each n. Let $f = \lim_{n \to \infty} f_n$. This limit exists at least almost everywhere. Then.

$$\int f \, d\mu = \lim_{n \to \infty} f_n \, d\mu$$

Theorem 3 (Dominated convergence theorem). Let f_n be measurable functions, and assume the limit $f = \lim_{n \to \infty} f_n$ exists almost everywhere. Assume there exists a function $g \ge 0$ such that $|f_n| \le g$ almost everywhere for each n and $\int g d\mu < \infty$. Then

$$\int f \, d\mu = \lim_{n \to \infty} f_n \, d\mu$$

 L^p -spaces: For a Borel-measurable function $f: \Omega \to \mathbb{R}$ let $||f||_{L^p} = (\int |f|^p d\mu)^{\frac{1}{p}}$. Let $\mathcal{L}^p(\Omega, \mathcal{F}, \mu) = \{f: \Omega \to \mathbb{R} \text{ measurable } : ||f||_p < \infty\}$. Then \mathcal{L}^p is a vector space. $||.||_{L^p}$ is not a norm because $||f||_{L^p} = 0 \not\Rightarrow f = 0$. Let $f \sim g$ if f = g almost everywhere, which is an equivalence relation. Then $L^p = \mathcal{L}^p \setminus \sim$ becomes a normed space. Moreover L^p is a complete space. Hölder's inequality: $||f \cdot g||_{L^1} \leq ||f||_{L^p} \cdot ||g||_{L^q}$ for $\frac{1}{p} + \frac{1}{q} = 1$

Theorem 4 (Fubini's theorem). Let $f \in L^1(\mu \otimes \nu)$. Then $f_x \in L^1(\nu)$ for μ -almost every $x, f_y \in L^1(\mu)$ for ν -almost every $y, g \in L^1(\mu)$ and $h \in L^1(\nu)$. Iterated integration as follows, is valid:

$$\int_{X \times Y} f d(\mu \otimes \nu) = \int_X \left\{ \int_Y f(x, \nu) (dy) \right\} \mu(dx)$$
$$= \int_Y \left\{ \int_X f(x, y) \mu(dx) \right\} \nu(dy)$$

1.3 Probability spaces

We call (Ω, \mathcal{F}, P) a probability space if $P(\Omega) = 1$.

Definition 5. $X : \Omega \to \mathbb{R}$ is called a *random variable* if it is measurable.

Definition 6. σ -algebras $\mathcal{F}_1, \mathcal{F}_2, \ldots$ are *independent* if

$$P\left(\bigcap_{i=1}^{n} A_{i}\right) = \prod_{i=1}^{n} P(A_{i}) \qquad \forall A_{i} \in \mathcal{F}_{i} \qquad \forall i \leq n \qquad \forall n \in \mathbb{N}$$

Definition 7. $X_1, X_2, \ldots, : \Omega \to \mathbb{R}$ are *independent* if $\sigma(X_1), \sigma(X_2), \ldots$, are independent.

Image measure: $X : \Omega \to \mathbb{R}^d$, $\mu_X(B) = P(X \in B), B \in \mathcal{B}(\mathbb{R}^d)$ Expectation: $\mathbb{E}[X] = \int_{\Omega} X dP$

Theorem 5. $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ are independent \iff the distribution of (X_1, \ldots, X_n) is $\mu = \mu_{X_1} \times \cdots \times \mu_{X_n}$

Theorem 6. If X and Y are independent, then $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ and $X \in L^p, Y \in L^{p'}$ then $\frac{1}{p} + \frac{1}{p'} = 1$

Proof. $\mu_X(B) = P(X \in B), \mu_Y(B) = P(Y \in B)$ then

$$\mathbb{E}[X] \cdot \mathbb{E}[Y] = \int \int xy d\mu_X(x) d\mu_Y(y)$$

$$\underset{\text{Fubini}}{=} \int \int xy d\mu_X \times \mu_Y(x,y)$$

$$\underset{\text{independence}}{=} \mathbb{E}[XY]$$

Definition 8. Almost surely (a.s.) means with probability 1

Definition 9. Let $\{X_n\}$ be a sequence of random variables and X a random variable, all real valued.

1. $X_n \to X$ almost surely if

$$P\left\{\omega: \lim_{n \to \infty} X_n(\omega) = X(\omega)\right\} = 1$$

2. $X_n \to X$ in probability if for every $\epsilon > 0$

$$\lim_{n \to \infty} P\left\{ \omega : |X_n(\omega) - X(\omega)| \ge \epsilon \right\} = 0$$

3. $X_n \to X$ in L^p for $1 \le p < \infty$ if

$$\lim_{n \to \infty} \mathbb{E}\left[|X_n(\omega) - X(\omega)|^p \right] = 0$$

4. $X_n \to X$ in distribution (also called *weakly*) if

$$\lim_{n \to \infty} P(X_n \le x) = P(X \le x)$$

for each x at which F(x) is continuous.

Theorem 7 (Theorem 1.21). Let $\{X_n\}$ and X be real-valued random variables on a common probability space.

- 1. If $X_n \to X$ almost surely or in L^p for some $1 \le p < \infty$, then $X_n \to X$ in probability.
- 2. If $X_n \to X$ in probability, then $X_n \to X$ weakly.
- 3. If $X_n \to X$ in probability, then there exists a subsequence X_{n_k} such that $X_{n_k} \to X$ almost surely.
- 4. Suppose $X_n \to X$ in probability. Then $X_n \to X$ in L^1 if and only if $\{X_n\}$ is uniformly integrable.

1.4 Conditional Expectations

Example 5. Let (Ω, \mathcal{F}, P) be a probability space. Let $x_1, \ldots, x_m, z_1, \ldots, z_n \in \mathbb{R}$ be distinct. Now let $X : \Omega \to \{x_1, \ldots, x_m\}, Z : \Omega \to \{z_1, \ldots, z_n\}$. Recall: $P(X = x_i | Z = z_j) \stackrel{\text{def}}{=} \frac{P(X = x_i, Z = z_j)}{P(Z = z_j)}$ and $\mathbb{E}[X | Z = z_j] = \sum_{i=1}^m x_i P(X = x_i | Z = z_j) = \frac{1}{P(Z = z_j)} \int_{\{Z = z_j\}} X dP$. A possible definition of $Y = \mathbb{E}[X | Z]$ could be $Y : \Omega \to \mathbb{R}, Y = \sum_{j=1}^n Y_j \mathbf{1}_{\{Z = z_j\}}$, where $Y_j = \mathbb{E}[X | Z = z_j]$. How to extend this to general X? Let $A = \sigma(Z)$

Observation 1: Y is constant on sets $\{Z = z_j\}$ thus Y is \mathcal{A} -measurable. **Observation 2:** $\int Y dP = y_j \cdot P(Z = z_j) = \int_{\{Z = z_j\}} X dP$. Thus $\forall G \in \mathcal{G}$: $\int_G Y dP = \int_G X dP$

Definition 10. Let (Ω, \mathcal{F}, P) be a probability space. Let $X \in L^1(P)$ and let $\mathcal{A} \subseteq \mathcal{F}$ be a sub- σ -algebra.

We say that $Y: \Omega \to \mathbb{R}$ is the conditional expectation of X given \mathcal{A} if:

- 1. Y is \mathcal{A} -measurable.
- 2. $Y \in L^1(P)$ and $\forall A \in \mathcal{A} \int_A Y dP = \int_A x dP$

Notation: $Y(\omega) = \mathbb{E}[X|\mathcal{A}](\omega)$ or $\mathbb{E}[X|\mathcal{A}]$

Note that $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{A}\right]\right] = \mathbb{E}\left[X\right]$

Theorem 8 (Uniqueness). If Y and \tilde{Y} are both conditional expectations of X given \mathcal{A} then $Y = \tilde{Y}$ a.s.

Proof. Let $\Delta Y = Y - \tilde{Y}$. Then ΔY is \mathcal{A} -measurable and $\forall A \in \mathcal{A} : \int_A \Delta Y dP = 0$ Let $A_1 = \{\Delta Y \ge 0\}$ and $A_2 = \{\Delta Y < 0\}$. Then $\mathbb{E}\left[|\Delta Y|\right] = \int_{A_1} \Delta Y dP - \int_{A_2} \Delta Y dP = 0 - 0 = 0$. Thus $|\Delta Y| = 0$ a.s., thus $Y = \tilde{Y}$ a.s.

Definition 11. In this case Y and \tilde{Y} are called *versions* of $\mathbb{E}[X|\mathcal{A}]$

Theorem 9. Properties of conditional expectation Let (Ω, \mathcal{F}, P) be a probability space. Let $X, Y \in L^1(P), \mathcal{A}, \mathcal{B} \subseteq \mathcal{F}$ be sub- σ -fields. Then:

- 1. $\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{A}\right]\right] = \mathbb{E}\left[X\right]$
- 2. (Linearity) $\mathbb{E}[\alpha X + \beta Y | \mathcal{A}] = \alpha \mathbb{E}[X | \mathcal{A}] + \beta \mathbb{E}[Y | \mathcal{A}], \ \alpha, \beta \in \mathbb{R}$
- 3. (Positivity) If $X \ge Y$ then $\mathbb{E}[X|\mathcal{A}] \ge \mathbb{E}[Y|\mathcal{A}]$.
- 4. If X is A-measurable then $\mathbb{E}[X|\mathcal{A}] = X$.
- 5. (Taking out what is known). If X is A-measurable and $XY \in L^1(P)$, then $\mathbb{E}[XY|\mathcal{A}] = X\mathbb{E}[Y|\mathcal{A}]$
- 6. (Independence) If X and A are independent, then $\mathbb{E}[X|A] = \mathbb{E}[X]$
- 7. (Tower property) If $\mathcal{A} \subseteq \mathcal{B}$, then $\mathbb{E} [\mathbb{E} [X|\mathcal{B}] | \mathcal{A}] = \mathbb{E} [X|\mathcal{A}]$ and also $\mathbb{E} [\mathbb{E} [X|\mathcal{A}] | \mathcal{B}] = \mathbb{E} [X|\mathcal{A}]$ by 4.
- 8. If $\mathcal{A} \subseteq \mathcal{B}$ and $\mathbb{E}[X|\mathcal{B}]$ is \mathcal{A} -measurable, then $\mathbb{E}[X|\mathcal{B}] = \mathbb{E}[X|\mathcal{A}]$.

9. (Jensen's inequality) Let $f : (a,b) \to \mathbb{R}$ be convex, $-\infty \leq a < b < \leq \infty$. Assume that a < X < b. a.s. and $f(X) \in L^1(P)$ Then: $f(\mathbb{E}[X|\mathcal{A}] \leq \mathbb{E}[f(X)|\mathcal{A}]$

Proof. Simple exercises: 1,2,4,6,8 Good exercises: 3,5,7 Too difficult: 9,10

2 Stochastic Processes

Let (Ω, \mathcal{F}, P) be a probability space. From now on we will assume that \mathcal{F} is complete, i.e. if $N \in \mathcal{A}$ satisfies $\mu(N) = 0$, then every subset of N is measurable (and then of course has measure zero).

Definition 12. A filtration on (Ω, \mathcal{F}, P) is a family of σ -fields $(\mathcal{F}_t)_{t \geq 0}$ such that $\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}, \forall 0 \leq s < t < \infty$.

Definition 13. A process $X : \mathbb{R} \times \Omega \to \mathbb{R}$ if $\mathcal{B}_{\mu_F} \times \mathcal{F}$ -measurable. Notation: $(X_t)_{t>0}, (t, \omega) \to X_t(\omega)$ or $X(t, \omega)$

Example 6. $(X_t)_{t\geq 0}$ a stock price. A possible filtration $\mathcal{F}_t^X = \sigma(X_s : s \in [0, t])$, our knowledge at time t.

Convention: \mathcal{F}_t contains all null sets of \mathcal{F} otherwise replace \mathcal{F}_t by $\overline{\mathcal{F}}_t = \{\mathcal{B} \in \mathcal{F}: \exists \mathcal{A} \in \mathcal{F}_t \text{ s.t. } P(\mathcal{A}\Delta\mathcal{B}) = 0\}$ where $\mathcal{A}\Delta\mathcal{B}$ is the symmetric difference.

Definition 14. $(X_t)_{t\geq 0}$ is called *adapted* to $(\mathcal{F}_t)_{t\geq 0}$ if $\forall t \geq 0 : \omega \to X_t(\omega)$ is \mathcal{F}_t -measurable.

Definition 15. $(X_t)_{t\geq 0}$ is called *progressively measurable* if $\forall T \geq 0 X$ restricted to $[0,T] \times \Omega$ is $\mathcal{B}_{[0,T]}$

Observation: X progressively measurable \Rightarrow X is adapted.

Definition 16. $(X_t)_{t\geq 0}, (Y_t)_{t\geq 0}$ are called modifications or versions if $\forall t \geq 0, P(X_t = Y_t) = 1.$ $(X_t)_{t>0}, (Y_t)_{t>0}$ are called indistinguishable if $P(X_t = Y_t, \forall t \geq 0) = 1.$

Theorem 10. Assume X is adapted to $(\mathcal{F}_t)_{t\geq 0}$ and X is left or right-continuous, then X is progressively measurable.

Definition 17. X is called *cadlag* if it has right-continuous paths and $\forall \omega \in \Omega$: $\forall t > 0 : \lim_{s \uparrow t} X_s(\omega)$ exists.

 $caglad\ left-continuous\ and\ right\ limits\ exists.$

Theorem 11. Assume X, Y are right-continuous. Assume: $S \subseteq \mathbb{R}_+$ is dense and countable. If $\forall t \in S$: $P(X_t = Y_t) = 1$, then X and Y are indistinguishable. Similar for left-continuous if $0 \in S$.

Proof. Let $\forall s \in S$: $V_s = \{X_s = Y_s\}$. Then $P(V_s) = 1$. Let $\Omega_0 = \bigcap_{s \in S} V_s$, then $P(\Omega_0) = 1$.

Claim: $\forall \omega \in \Omega_0, \forall t > 0 \ X_t = Y_t \text{ thus } P(X_t = Y_t, \forall t > 0) = P(\Omega_0) = 1.$

Definition 18. $\tau : \Omega \to [0, \infty]$ is called a *stopping time* if $\forall t \in (0, \infty) : \{\tau < t\} \in \mathcal{F}_t$

Example 7. First time a stock price is > 100. First time a stock price is lower than the price a week before.

Theorem 12. X adapted and continuous, $H \in \mathbb{R}$ is closed. Define: $\tau_H(\omega) = \inf\{\tau \ge 0 : X_t(\omega) \in H\}$, then τ_H is a stopping time.

2.1 Quadratic variation

We start with bounded variation from section 1.1.9. Given $F : [a, b] \to \mathbb{R}$, define: $V_F(t) := \sup\{\sum_{i=1}^n |F(S_i) - F(S_{i-1})| : a = S_0 < S_1 < \cdots < S_n = b\}$. F has bounded variation if $V_F(b) < \infty$. Observation: $V_F(0) = 0$, V_f is non-decreasing.

Notation: BV[a, b] is space of functions of bounded variation.

Theorem 13. $F \in BV[a, b] \iff F$ is the difference of two nondecreasing functions: $F = F_1 - F_2$.

Lebesgue-Stieltjes integral: F increasing on [a, b] then $\Lambda_f(u, v] = F(v) - F(u)$ extends to a positive Borel measure Λ_F on [a, b], which is called the Lebesgue-Stieltjes measure.

Notation: $\int_{(a,b]} g d\Lambda_F$ or $\int_{(a,b]} g(x) dF(x)$ for the Lebesgue-Stieltjes integral. Careful if F has a jump in t, then $\Lambda_F(\{t\}) = F(t) - F(t-)$.

An idea for quadratic variation is $\sum (F(S_i) - F(S_{i-1}))^2$, but we want more. Given $\pi(t) = \{0 = t_0, \ldots, t_m = t\}$ a mesh on [0, t] and process Y. Let $V_y^2(\pi(t)) = \sum_{i=0}^{m-1} |Y_{t_{i+1}}(\omega) - Y_{t_i}(\omega)|^2$. We say that V_Y^2 converges in probability to process Z if $\forall \epsilon > 0 \exists \delta > 0 : \forall t > 0, \forall \pi(t), \operatorname{mesh}(\pi) < \delta \Rightarrow P(|V_Y^2(\pi(t)) - Z_t| > \epsilon) < \epsilon$ Notation: $[Y]_t = \lim_{\operatorname{mesh}(\pi) \to 0} V_Y^2(\pi(t))$ in probability.

Definition 19. $[Y] = ([Y]_t)_{t>0}$ is called the quadratic variation process of Y if

- the limit exists.
- There exists a version of [Y] s.t. $\forall \omega : t \to [Y]_t(\omega)$ is nondecreasing.

Definition 20. $[X, Y] = \frac{1}{4}[X+Y] - \frac{1}{4}[X-Y]$ if the right hand side exists.

$$\lim_{\text{mesh}\to 0} \sum_{i} (X_{t_{i+1}} - X_{t_i})(Y_{t_{i+1}} - Y_{t_i}) = [X, Y]_t$$

where we use the fact that $\frac{1}{4}(a+b)^2 - \frac{1}{4}(a-b)^2 = ab$ Also: $[X,Y]_t = \frac{1}{2}([X+Y]_t - [X] - [Y])$

Theorem 14. If X, Y are cadlag and [X, Y] exists then [X, Y] has a cadlag modification and $\Delta[X, Y]_t = (\Delta X_t)(\Delta Y_t)$. Here $\Delta Z_t = Z_t - Z_{t-}$ for Z cadlag.

Theorem 15.
$$|[X,Y]_t - [X,Y]_s| \le ([X]_t - [X]_s)^{\frac{1}{2}} ([Y]_t - [Y]_s)^{\frac{1}{2}}$$

Theorem 16 (Kunita-Watanabe inequality). Assume that [X], [Y], [X, Y] exist and are right-continuous. Then for bounded and measurable functions G, H: $[0, T] \times \Omega \rightarrow \mathbb{R}$

$$\begin{aligned} \left| \int_{[0,T]} G(t,\omega) H(t,\omega) d[X,Y]_t(\omega) \right| \\ &\leq \left(\int_{[0,T]} G(t,\omega)^2 d[X]_t(\omega) \right)^{1/2} \left(\int_{[0,T]} H(t,\omega)^2 d[Y]_t(\omega) \right)^{1/2} \end{aligned}$$

Remark: by a Radon-Nikodym derivative this result also holds iwth

$$\begin{aligned} \left| \int_{[0,T]} G(t,\omega) H(t,\omega) |\Lambda_{[X,Y](\omega)}| \mathrm{d}t \right| \\ & \leq \left(\int_{[0,T]} G(t,\omega)^2 \mathrm{d}[X]_t(\omega) \right)^{1/2} \left(\int_{[0,T]} H(t,\omega)^2 \mathrm{d}[Y]_t(\omega) \right)^{1/2} \end{aligned}$$

3 Brownian motion

Definition 21. Let (Ω, \mathcal{F}, P) be a probability space with filtration $(\mathcal{F}_t)_{t\geq 0}$. A process $(B_t)_{t\geq 0}$ is called a *one-dimensional Brownian motion w.r.t.* $(\mathcal{F}_t)_{t\geq 0}$ if:

- 1. For almost all $\omega \in \Omega : t \to B_t(\omega)$ is continuous.
- 2. $\forall 0 \leq s \leq t, B_t B_s$ is independent of \mathcal{F}_s and has a normal distribution with $\mathbb{E}[B_t B_s] = 0$ and $\mathbb{E}[(B_t B_s)^2] = t s$

If additionally 3. $B_0 = 0$ a.s. then B is called a standard Brownian motion.

Theorem 17. Assume (Ω, \mathcal{F}, P) is rich enough. Then there exists a process $(B_t)_{t\geq 0}$ such that $(B_t)_{t\geq 0}$ is a standard Brownian Motion w.r.t. $(\mathcal{F}_t)_{t\geq 0}$

Two pages about the construction of Brownian Motion - Not relevant I think.

Theorem 18. Let $(B_t)_{t\geq 0}$ be a Brownian Motion w.r.t. $(\mathcal{F}_t)_{t\geq 0}$. Then $\forall s \leq t$ we have that $\mathbb{E}[B_t|\mathcal{F}_s] = B_s$ and $\mathbb{E}[B_t^2 - t|\mathcal{F}_s] = B_s^2 - s$

Proof. We start with noticing that $\mathbb{E}[B_t - B_s | \mathcal{F}_s] = \mathbb{E}[B_t - B_s] = 0$. Therefore $\mathbb{E}[B_t | \mathcal{F}_s] = \mathbb{E}[B_t - B_s + B_s | \mathcal{F}_s] = B_s$. And $\mathbb{E}[(B_t - B_s)^2 | \mathcal{F}_s] = t - s$ thus $\mathbb{E}[B_t^2 - 2B_t B_s + B_s^2 | \mathcal{F}_s] = t - s$ and $\mathbb{E}[B_t B_s | \mathcal{F}_s] = B_s \mathbb{E}[B_t | \mathcal{F}_s] = B_s^2$. Conclusion: $\mathbb{E}[B_t^2 | \mathcal{F}_s] - B_s^2 = t - s$

Theorem 19. $[B]_t = t$, moreover for all partitions π we have that

$$\mathbb{E}\left[\left(\sum_{i=0}^{m(\pi)-1} (B_{t_{i+1}} - B_{t_i})^2 - t\right)^2\right] \le 2t \operatorname{mesh}(\pi)$$

Thus $\sum_{i=0}^{m(\pi)-1} (B_{t_{i+1}} - B_{t_i})^2 \to t \text{ in } L^2(p) \text{ and in } P \text{ as } mesh(\pi) \to 0.$

Theorem 20. Almost surely for all T > 0, the path $t \mapsto B_t(\omega)$ is not a member of BV[0,T].

4 Uniform integrability and Martingales

4.1 Uniform integrability

Definition 22. A collection C of random variables is called *uniformly integrable* (UI) if

$$\lim_{r \to \infty} \sup_{Z \in C} \int_{\{|Z| > r\}} |Z| \mathrm{d}P = 0$$

Example 8. If $X \in L^1$, then $C = \{X\}$ is UI.

Example 9. If $X \in L^1$ then $C = \{Z : \Omega \to \mathbb{R} : |Z| \le |X| \text{ a.s. }\}$ is UI.

Theorem 21. Let p > 1. If $C \subseteq L^p$ and $K := \sup_{Z \in C} ||Z||_{L^p} < \infty$ then C is UI.

Example 10. $\Omega = [0, 1], P$ is Lebesgue-measure. $X_n = n \mathbf{1}_{[0, \frac{1}{n}]}, n \ge 1$. Then $C = \{X : n \in \mathbb{N}\}$ is not III

 $C = \{X_n : n \in \mathbb{N}\}$ is not UI. Indeed, given r > 0 choose n > r. Then $\int_{\{|X_n| > r\}} |X_n| dP = \int |X_n| dP = 1$. Thus $\sup_{X \in C} \int_{\{|X_n| > r\}} |X_n| dP = 1$ for all r > 0.

Theorem 22. Let (Ω, \mathcal{F}, P) be a probability space. Let $X \in L^1(P)$ and define $C := \{\mathbb{E}[X|\mathcal{G}] : \mathcal{G} \subseteq \mathcal{F}\}$. Then C is uniformly integrable.

Theorem 23 (Bounded convergence theorem). Assume $X_n \to X$ in probability. Assume $\exists K > 0 : \forall n \in \mathbb{N}, \forall \omega \in \Omega | X_n(\omega) | \leq K$, then $X_n \to X$ in L^1

Theorem 24. Let $X_n, X \in L^1$.

$$X_n \to X \text{ in } L^1 \iff \begin{cases} X_n \to X \text{ in probability.} \\ \{X_n : n \ge 1\} \text{ is } UI. \end{cases}$$

4.2 Martingales

Definition 23. $(M_t)_{t>0}$ is called a *martingale* w.r.t. $(\mathcal{F}_t)_{t>0}$ if

- 1. $M_t \in L^1(P)$
- 2. (M_t) is $(\mathcal{F})_t$ -adapted.
- 3. $\forall 0 \leq s < t : \mathbb{E}[M_t | \mathcal{F}_S] = M_s$ almost surely

Submartingale: Replace 2. by $\mathbb{E}[M_t | \mathcal{F}_S] \ge M_s$ Supermartingale: Replace 2. by $\mathbb{E}[M_t | \mathcal{F}_S] \le M_s$

Note that $\mathbb{E}[M_t|\mathcal{F}_s] \geq M_s \iff \forall A \in \mathcal{F}_s \mathbb{E}[\mathbf{1}_A M_t] \geq \mathbb{E}[\mathbf{1}_A M_s]$ M is called *square integrable* if $\forall t \geq 0 : \mathbb{E}[M_t^2] < \infty$. The discrete definition is analogue.

Theorem 25. If $(M_t)_{t\geq 0}$ is a martingale and ϕ is convex and $\forall t > 0 : \phi(M_t) \in L^1$ then $\phi(M_t)$ is a submartingale.

Proof. Jensen's inequality for s < t: $\mathbb{E}[\phi(M_t)|\mathcal{F}_s] \ge \phi(\mathbb{E}[M_t|\mathcal{F}_s]) = \phi(M_s)$. \Box

4.3 Optional stopping

We extend the times used in the definition of martingales to stopping times. Notation: $x \wedge y = \min\{x, y\}$ and $x \vee y = \max\{x, y\}$. First the discrete case:

Theorem 26 (Lemma 3.4). Let M be a submartingale. Assume that τ and σ are stopping times whose values lie in an ordered countable set $\{s_1 < s_2 < s_3 < \dots \} \cup \{\infty\}$ where $s_n \to \infty$. Then for any $T < \infty$,

$$\mathbb{E}\left[M_{\tau\wedge T}|\mathcal{F}_{\sigma}\right] = M_{\sigma\wedge\tau\wedge T}$$

Theorem 27 (Lemma 3.5). Let M be a submartingale with right-continuous paths and $T < \infty$. Let ρ be a stopping time with $P(\rho < T) = 1$. Then:

$$\mathbb{E}\left[M_{\rho}\right] \le 2\mathbb{E}\left[M_{T}^{+}\right] - \mathbb{E}\left[M_{0}\right]$$

so $M_{\rho} \in L^1$.

Theorem 28. Let M be a right-continuous submartingale. Let σ, τ be stopping times, $T < \infty$. Then $\mathbb{E}[M_{\tau \wedge T} | \mathcal{F}_{\sigma}] \geq M_{\sigma \wedge \tau \wedge T}$. Note the integrability by lemma 3.5

Theorem 29 (Corollary 3.7). Suppose $(M_t)_{t\geq 0}$ is a right-continuous (sub)martingale and τ is a stopping time. Then $M^{\tau} = (M_{t\wedge \tau})_{t\geq 0}$ is a right-continuous (sub)martingale. If M is an L^2 martingale, then M^{τ} is as well.

Theorem 30 (Corollary 3.8). Suppose M is a right-continuous submartingale. Let $\{\sigma(u) : u \ge 0\}$ be nondecreasing, $[0, \infty)$ -values process such that $\sigma(u)$ is a bounded stopping time for each u. Then $\{M_{\sigma(u)} : u \ge 0\}$ is a submartingale with respect to the filtration $\{\mathcal{F}_{\sigma(u)} : u \ge 0\}$

5 Further investigating martingales

5.1 Inequalities and limits

Towards Doob's inequality:

Theorem 31 (Lemma 3.9). Let M be a submartingale, $0 < T < \infty$ and H a finite subset of [0,T]. Then for all r > 0

$$P(\{\max_{t\in H} M_t \ge r\}) \le r^{-1}\mathbb{E}\left[M_T^+\right]$$

and

$$P(\{\min_{t \in H} M_t \le r\}) \le r^{-1} (\mathbb{E} \left[M_T^+\right] - \mathbb{E} \left[M_0\right])$$

Theorem 32 (Doobs mean). Let M be a right-continuous submartingale and $0 < T < \infty$. Then for all r > 0:

$$P(\{\sup_{t\in H} M_t \ge r\}) \le r^{-1}\mathbb{E}\left[M_T^+\right]$$

and

$$P(\{\inf_{t \in H} M_t \le r\}) \le r^{-1}(\mathbb{E}\left[M_T^+\right] - \mathbb{E}\left[M_0\right])$$

Theorem 33 (Doob's Inequality). Let M be a nonnegative, right-continuous submartingale and $0 < T < \infty$. Then for 1

$$\mathbb{E}\left[\sup_{0 \le t \le T} M_t^p\right] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}\left[M_T^p\right]$$
$$P\left(\sup_{0 \le t \le T} M_t \ge C\right) \le \frac{\mathbb{E}\left[M_T^p\right]}{C^p}$$

Example 11. For example if (N_t) is a right-continuous martingale, we can apply Doob's inequality on $M_t = |N_t|$.

Most important cases of martingale convergence: M_t is a martingale with $\sup_{t < \infty} \mathbb{E}[|M_t|] < \infty$ then $M_{\infty} = \lim_{t \to \infty} M_t$ exists almost surely and $M_{\infty} \in L^1$. Convergence need not be in L^1 . This holds if and only if $\{M_t : t \ge 0\}$ is uniformly integrable.

5.2 Local martingales and semimartingales

Notation: For process X, τ a stopping time we denote with $X_t^{\tau} = X_{t \wedge \tau}$. X^{τ} is called the stopped process.

Definition 24. M_t is called a *local martingale* if

1. M_t is (\mathcal{F}_t) adapted.

2. There exists a sequence of stopping times $(\tau_k)_{k=1}^{\infty}$ such that $\tau_1 \leq \tau_2 \leq$ $\ldots, \tau_k \to \infty$ a.s. and $\forall k : M^{\tau_k}$ is a martingale.

 $(\tau_k)_k$ is called a *localizing sequence* for M.

M is called a *local square integrable* martingale if 1., 2. and $M^{\tau_k} \in L^2$ for all k.

Remark: If M has continuous paths, we can take $\tau_k = \inf\{t \ge 0 : |M_t| \ge k\}$ as a localizing sequence. Moreover $|M_t^{\tau_k}| \leq k$

Definition 25. A cadlag process Y is called a *semimartingale* if there exists a local martingale M with $M_0 = 0$ and there exists a finite variation process V with $V_0 = 0$ such that $Y_t = M_t + V_t + Y_0$ for all $t \ge 0$.

Continuous semimartingale: if additionally M, V are continuous.

5.3Quadratic variation for Semimartingales

Remember that $[B]_t = t$ for a Brownian Motion and $[B, Y]_t = 0$ if B, Y are independent Brownian Motions.

Theorem 34 (Theorem 3.26). Let M be a right-continuous local martingale, then [M] exists and there is a version of [M] which is:

- real-valued (so no ∞)
- right-continuous
- nondecreasing
- adapted
- $[M]_0 = 0$

If M is an L^2 – martingale then $\lim_{mesh(\pi)\to 0} \sum_{i=0}^{m(\pi)-1} |M_{t_{i+1}} - M_{t_i}|^2 \to [M]_t$ is in L^1 and $\mathbb{E}\left[[M]_t\right] = \mathbb{E}\left[M_t^2 - M_0^2\right]$ If M is continuous, then [M] has a version, which is continuous.

Theorem 35 (Lemma 3.27). Let M be a right-continuous local martingale. Let τ be a stopping time. Then $[M^{\tau}] = [M]^{\tau}$. This means that for all $t \geq 0$: $[M^{\tau}] - T = [M]_{\tau \wedge t}$

Theorem 36 (Theorem 3.28). If M is a right-continuous (local) L^2 -martingale then $M^2 - [M]$ is as well.

If M, N are right-continuous (local) L^2 -martingales then [M, N] also exists and $[M^{\tau}, N] = [M^{\tau}, N^{\tau}] = [M, N]^{\tau}.$

Moreover MN - [M, N] is also a (local) L^2 -martingale again.

Theorem 37 (Corallary 3.31). Let M be a cadlag local martingale, V a cadlag FV process $M_0 = V_0 = 0$, and $Y = Y_0 + M + V$ the cadlag semimartingale. Then [Y] exists and is given by:

$$[Y]_t = [M]_t + 2[M, V]_t + [V]_t$$

Furthermore, $[Y^{\tau}] = [Y]^{\tau}$

6 Spaces of martingales and Stochastic Integration

6.1 Spaces of martingales

From now on only continuous L^2 -martingales \mathcal{M}_2^C and sometimes local $\mathcal{M}_{2,loc}^C$. Remind from analysis: C[a,b] with $||f||_{\infty} = \sup_{t \in [a,b]} |f(t)|$ is complete. Fur-

thermore $L^2(p)$ is complete. $||X||_{L^2} = (\mathbb{E}[|X|^2])^{\frac{1}{2}}$ Possible norm on martingales on [0,T] would be $||M_T||_{L^2}$. But note that for all $t \in [0,T]||M_t||_{L^2} \leq ||M_T||_{L^2}$, even more: $||\sup_{t \in [0,T]} |M_t||_{L^2} \leq 2||M_T||_{L^2}$ Thus $(M^{(n)})_{n\geq 1}$ sequence such that $M_T^{(n)}$ is Cauchy in $L^2(p)$ implies $\forall \epsilon > 0$

$$P\left(\sup_{t\in[0,T]}|M_t^{(n)} - M_t^{(m)}| \ge \epsilon\right) \le \frac{\mathbb{E}\left[|M_T^{(n)} - M_T^{(m)}|^2\right]}{\epsilon^2}$$

by Doob's inequality. This is called $(M^{(n)})_{n\geq 1}$ is uniformly Cauchy in probability. After some calculations we find that $||M_T||_{L^2}$ could become ∞ for $T \to \infty$. Therefore we define

$$||M||_{\mathcal{M}_2^C} := \sum_{k=1}^{\infty} 2^{-k} (1 \wedge ||M_k||_{L^2})$$

but there are many other equivalent choices possible.

This is not a norm because $||aM||_{\mathcal{M}_2^C} \neq |a| \cdot ||M||_{\mathcal{M}_2^C}$ but $d_{M_2}(M, N) = ||M - N||_{\mathcal{M}_2^C}$ is a metric.

Theorem 38 (Theorem 3.40). Let (\mathcal{F}_t) be complete. Then \mathcal{M}_2^C is a complete metric space under the metric $d_{\mathcal{M}_2}$.

Theorem 39. If $M^{(n)} \to M$ in \mathcal{M}_2^C , then:

$$\forall T < \infty, \forall \epsilon > 0 : \lim_{n \to \infty} P(\sup_{t \in [0,T]} |M_t^{(n)} - M_t| \ge \epsilon) = 0$$

This is called uniform convergence on compact intervals. Furthermore there exists a subsequence $(M^{(n_k)})$ and $\Omega_0 \subseteq \Omega$ such that $P(\Omega_0) = 1$ and for each $\omega \in \Omega_0, \forall T < \infty$

$$\lim_{n \to \infty} \sup_{0 \le t \le T} |M_t^{(n_k)}(\omega) - M_t(\omega)| = 0$$

6.2 Stochastic integration of predictable processes

We only consider $\int X dY$ with Y continuous to simplify the presentation in the lectures.

Definition 26. ρ is the smallest σ -algebra which contains $(s,t] \times F$ with $0 \leq s < t < \infty, F \in \mathcal{F}_s$ and $\{0\} \times F_0$ with $F_0 \in \mathcal{F}_0$ ρ is called *predictable* σ -algebra $(s,t] \times F$ is called *predictable rectangle*. **Theorem 40** (Lemma 5.1). A process is ρ -measurable if and only if it can be approximated by (left)-continuous adapted processes

Proof. We proof that a left-continuous adapted process X is ρ -measurable. Proof. We proof that a left-continuous adapted F^{-1} . Rewrite $X_n(t,\omega) = X_0(\omega)\mathbf{1}_{\{0\}} + \sum_{i=0}^{\infty} X_{i2^{-n}}\mathbf{1}_{[i2^{-n},(i+1)2^{-n}]}(t)$ Now $\{X_n \in \mathcal{B}\} = \{0\} \times \{X_0 \in \mathcal{B}\} \cup \bigcup_{i=0}^{\infty} (i2^{-n},(i+1)2^{-n}] \times \{X_{i2^{-n}} \in \mathcal{B}\}$. Thus $\{X_n \in \mathcal{B}\} \in \mathfrak{c}$ thus Y is c-measurable.

 $\{X_n \in \mathcal{B}\} \in \rho$, thus X_n is ρ -measurable. Also by left continuity $X_n \to X$ on $[0, \infty) \times \Omega$ thus X is ρ -measurable.

Remarks: Not all right-continuous adapted processes are predictable. $X: [0,\infty) \to \mathbb{R}$ with the Borel-measure is predictable.

Doleans measure: μ_M on ρ Let $M \in \mathcal{M}_2^C$ then Doleans measure is defined as:

$$\mu_M(A) = \int_{\Omega} \int_{[0,\infty)} \mathbf{1}_A(t,\omega) \mathrm{d}[M]_t(\omega) \mathrm{d}P(\omega)$$

The meaning of this formula is that first, for each fixed ω , the function $t \mapsto$ $\mathbf{1}_A(t,\omega)$ is integrated by the Lebesgue-Stieltjes measure $\Lambda_{[M](\omega)}$ of the function $t \mapsto [M]_t(\omega)$. The resulting integral is a measurable function of ω , which is then averaged over the probability space.

Convention: $\Lambda_{[M](\omega)}(\{0\}) = 0.$

Note: $\mu_M([0,T] \times \Omega) = \mathbb{E}[[M]_t - [M]_0] = \mathbb{E}[M_t^2] - \mathbb{E}[M_0^2] < \infty$ thus μ_M is a σ -finite measure.

Example 12. Assume $(B_t)_t$ is a standard Brownian Motion and $\mu_B = m \otimes p$ where m is the Lebesgue measure. Indeed: $\mu_B(B) = \int_{\Omega} \int_{[0,\infty)} \mathbf{1}_A(t,\omega) dt dP(\omega) =$ $m \otimes P(A)$

Definition 27. For $X : \mathbb{R}_+ \times \Omega \to \mathbb{R}$ predictable:

$$||X||_{\mu_{M,T}} = \left(\int_{[0,T]\times\Omega} |X|^2 \mathrm{d}\mu_M\right)^{\frac{1}{2}} = \mathbb{E}\left[\int_{[0,T]} |X(t)|^2 \mathrm{d}[M]_t\right]$$

 $\mathcal{L}_2 = \mathcal{L}_2(M, P)$ is the set of all predictable X such that $\forall T < \infty : ||X||_{\mu_{M,T}} < \infty$ A metric on \mathcal{L}_2 is defined as:

$$d_{\mathcal{L}_2}(X,Y) = ||X - Y||_{\mathcal{L}_2}$$

with

$$||X||_{\mathcal{L}_2} = \sum_{k=1}^{\infty} 2^{-k} (1 \wedge ||X||_{\mu_M,k})$$

Here we identify processes which are μ_M almost everywhere equal.

Example 13. Let $(B_t)_{t\geq 0}$ be a Brownian Motion and X a predictable process. Then we have that $X \in \mathcal{L}_2$ if and only if

$$\forall T < \infty : X \in L^2((0,T] \times \Omega)$$

Example 14. Let $M \in \mathcal{M}_2^C$. If $\forall T < \infty \exists C_T, \forall \omega, t | X_t(\omega) | \leq C_T$ and X predictable, then $X \in \mathcal{L}(M, P)$. Indeed,

$$\mathbb{E}\left[\int_{[0,T]} |X(s)|^2 \mathrm{d}[M]_s\right] \leq \mathbb{E}\left[\int_{[0,T]} C_T^2 \mathrm{d}[M]_S\right]$$
$$= C_T^2 \mathbb{E}\left[[M]_T - [M]_0\right]$$
$$= C_T^2 \mathbb{E}\left[M_T^2 - M_0^2\right] < \infty$$

6.3 Construction of the stochastic integral

Our goal is to define $(X \cdot M)_t := \int_{(0,t]} X dM$ for $X \in \mathcal{L}_2(M, P)$

Step 1 $X \in S_2$ a simple predictable process.

Step 2 Prove L^2 -isometry for $X \cdot M$

$$\mathbb{E}\left[|(X \cdot M)_T|^2\right] = ||X||_{\mu_M,T} \text{ for } X \in \mathcal{S}_2$$

Step 3 Approximation/density argument for $X \in \mathcal{L}_2(M, P)$. Here completeness of \mathcal{M}_2^C plays a crucial role.

Step 4 Localization: no integrability conditions on Ω

Step 5 Extension to continuous semimartingales.

Definition 28. A process *X* of the form:

,

$$\begin{cases} X_t(\omega) = \xi_0(\omega) \mathbf{1}_{\{0\}}(t) + \sum_{i=1}^{n-1} \xi_i(\omega) \mathbf{1}_{\{t_i, t_{i+1}\}}(t) \\ \text{with } 0 = t_0 < t_1 < \dots < t_n \text{ and } \xi_i \text{ is } \mathcal{F}_{t_i}\text{-measurable.} \end{cases}$$

is called a simple predictable process, notation $X \in \mathcal{S}_2$

7 Stochastic Integration

7.1 Step 1,2 and 3

Definition 29. A process X of the form:

$$\begin{cases} X_t(\omega) = \xi_0(\omega) \mathbf{1}_{\{0\}}(t) + \sum_{i=1}^{n-1} \xi_i(\omega) \mathbf{1}_{\{t_i, t_{i+1}\}}(t) \\ \text{with } 0 = t_0 < t_1 < \dots < t_n \text{ and } \xi_i \text{ is } \mathcal{F}_{t_i}\text{-measurable.} \end{cases}$$

is called a simple predictable process, notation $X \in \mathcal{S}_2$

Theorem 41 (Lemma 5.6). X of the form is indeed predictable

Proof. By linearity it suffices to consider $\xi \mathbf{1}_{(a,b]}$ with $\xi \mathcal{F}$ -measurable. Now approximate ξ by simple random variables to get predictable rectangles. Similarly for $\xi \mathbf{1}_{\{0\}}$

Definition 30. For X a simple predictable process and $M \in \mathcal{M}_2^C$ we define the *stochastic integral* to be:

$$(X \cdot M)_t(\omega) = \sum_{i=1}^{n-1} \xi_i(\omega) \left(M_{t_{i+1} \wedge t}(\omega) - M_{t_i \wedge t}(\omega) \right)$$

Remarks: The value at zero of X and M are irrelevant. Adding a \mathcal{F}_0 -measurable random variable to M does not change the stochastic integral. Two other notations: $\int_0^t X dM$ and I(X) for $X \cdot M$.

- **Theorem 42** (Lemma 5.8). 1. The stochastic integral does not depend on its representation.
 - 2. The integral is linear.

Theorem 43. Let $X \in S_2$, $M \in \mathcal{M}_2^C$, then $X \cdot M \in \mathcal{M}_2^C$ and the following L^2 -isometries hold:

$$||(X \cdot M)_t||_{L^2(\Omega, P)} = ||X||_{L^2((0, t) \times \Omega, \mu_M)}$$
(1)

$$||X \cdot M||_{\mathcal{M}_{2}^{C}} = ||X||_{\mathcal{L}_{2}} \tag{2}$$

Now we continue with step 3:

Theorem 44 (Lemma 5.10). For any $X \in \mathcal{L}_2$ there exists a sequence $(X_n)_{n\geq 1} \in \mathcal{S}_2$ such that $\lim_{n\to\infty} ||X - X_n||_{\mathcal{L}_2} = 0$

Definition 31. Take $M \in \mathcal{M}_2^C$ and $X \in \mathcal{L}_2(M)$. Choose $(X_n)_{n \ge 1} \in \mathcal{S}_2$ such that $||X - X_n||_{\mathcal{L}_2} \to 0$. Now we define the *stochastic integral* for X to be

$$(X \cdot M)_t = \lim_{n \to \infty} (X_n \cdot M)_t$$

Existence of limit. $(X_n)_{n\geq 1}$ exists by lemma 5.10. Also:

$$||X_n \cdot M - X_m \cdot M||_{\mathcal{M}_2^C} = ||(X_n - X_m) \cdot M||_{\mathcal{M}_2^C}$$

= ||X_n - X_m||_{\mathcal{L}_2}
$$\leq ||X_n - X||_{\mathcal{L}_2} + ||X - X_m||_{\mathcal{L}_2} \to 0$$

Thus $(X_n \cdot M)_{n\geq 1}$ is a Cauchy sequence in M_2^C hence converges by the completeness of M_2^C . Thus $\lim_{n\to\infty} X_n \cdot M$ exists in \mathcal{M}_2^C **Uniqueness:** Take $Z_n \in \mathcal{S}_2$ such that $Z_n \to X$ in \mathcal{L}_2 . Then

$$||X_n \cdot M - Z_n \cdot M||_{\mathcal{M}_2^C} = ||(X_n - Z_n) \cdot M||_{\mathcal{M}_2^C}$$

= $||X_n - Z_n||_{\mathcal{L}_2}$
 $\leq ||X_n - X||_{\mathcal{L}_2} + ||Z_n - X||_{\mathcal{L}_2} \to 0$

Thus $(Z_n \cdot M)_{n \ge 1}$ has the same limit as $(X_n \cdot M)_{n \ge 1}$ in \mathcal{M}_2^C . Thus $(X \cdot M)_t$ is unique up to indistinguishability.

Theorem 45 (Proposition 5.12). Let $M \in \mathcal{M}_2^C$, $X \in \mathcal{L}_2(M)$ then $\forall t < \infty ||(X \cdot M)_t||_{L^2(\Omega, P)} = ||X||_{L^2((0,t) \times \Omega, \mu_M}$ and $||X \cdot M||_{\mathcal{M}_2^C} = ||X||_{\mathcal{L}_2(M)}$ In particular, if X = Y, μ_M -almost surely, then $X \cdot M$ and $Y \cdot M$ are indistinguishable.

Proof. Just take limits in lemma 5.9. Als use the reverse triangle inequality:

$$|||\phi|| - ||\psi||| \le ||\phi - \psi||$$

Properties of the stochastic integral

Theorem 46 (Proposition 5.14). This proposition gives some properties of the stochastic integral:

1. Linearity:

$$(\alpha X + \beta B) \cdot M = \alpha (X \cdot M) + \beta (Y \cdot M)$$

2. For any $0 \le u \le v$,

$$\int_{(0,t]} \mathbf{1}_{[0,v]} X dM = \int_{(0,v \wedge t]} X dM$$

and

$$\int_{(0,t]} \mathbf{1}_{(u,v]} X \, dM = (X \cdot M)_{v \wedge t} - (X \cdot M)_{u \wedge t} = \int_{(u \wedge t, v \wedge t]} X \, dM$$

3. For s < t we have a condition form of the isometry:

$$\mathbb{E}\left[((X \cdot M)_t - (X \cdot M)_s)^2 | \mathcal{F}_s\right] = \mathbb{E}\left[\int_{(s,t]} X_u^2 d[M]_u | \mathcal{F}_s\right]$$

Theorem 47 (Proposition 5.19). Let $M, N \in \mathcal{M}_2, \alpha, \beta \in \mathbb{R}$, and $X \in \mathcal{L}_2(M, P) \cap \mathcal{L}_2(N, P)$. Then $X \in \mathcal{L}_2(\alpha M + \beta N, P)$ and

$$X \cdot (\alpha M + \beta N) = \alpha (X \cdot M) + \beta (X \cdot N)$$

8 Stochastic Integration

8.1 Step 4 and 5

Last time we considered $M \in \mathcal{M}_2^C$, the continuous L^2 -martingale and $(X \cdot M) \in \mathcal{M}_2^C$ for $X \in \mathcal{L}^2(M)$. Here $X \in \mathcal{L}_2(M) \iff \forall T < \infty X \in L^2((0,T) \times \Omega, \mathrm{d}\mu_M)$

Theorem 48 (Proposition 5.16).

$$((\mathbf{1}_{[0,\tau]}X)\cdot M)_t = (X\cdot M)_{\tau\wedge t} = (X\cdot M^{\tau})_t$$

Today we only want to assume;

- $M \in \mathcal{M}_{2,\mathrm{loc}^C}$
- $X \in L^2((0,T), [M])$ almost surely for all $T < \infty$

but the problem is that there is no integrability in $\Omega.$

Example 15. $X_t = e^{B_t^4}$, $M = X \cdot B$ should exist and what is M? And what about $(Y \cdot M)_t$?

Recall that $M \in \mathcal{M}_{2,\text{loc}}^C \iff$ there exists a localizing sequence $\sigma_k \uparrow \infty$ such that $M^{\sigma_k} \in \mathcal{M}_2^C$

Definition 32. Let $M \in \mathcal{M}_{2,\text{loc}}^C$. We say $X \in \mathcal{L}(M, P)$ if X is predictable and there exists stopping times $0 \leq \tau_1 \leq \tau_2 \leq \dots$ such that

- 1. $P(\lim_{k\to\infty}\tau_k=\infty)=1$
- 2. $M^{\tau_k} \in \mathcal{M}_2^C$ for all k
- 3. $\mathbf{1}_{[0,\tau_k]} X \in \mathcal{L}(M^{\tau_k}, P \text{ for all } k.$

In this case (τ_k) is called a localizing sequence for $(X \cdot M)$. Remark: $\mathbf{1}_{[0,\tau_k]}$ is predictable, because it is adapted and left-continuous.

Now the idea is to define $(X \cdot M)$ locally:

$$Y^k = (\mathbf{1}_{[0,\tau_k]} X \cdot M^{\tau_k})$$

and let $k \to \infty$. Here k is an index.

Theorem 49 (Lemma 5.22). $M \in \mathcal{M}_{2,loc}^C$, X predictable. If τ, σ are stopping times such that $M^{\sigma}, M^{\tau} \in \mathcal{M}_2^C$ and $\mathbf{1}_{[0,\sigma]}X \in \mathcal{L}_2(M^{\sigma}), \mathbf{1}_{[0,\tau]}X \in \mathcal{L}_2(M^{\tau})$. Define :

$$Z_t := \int_{(0,t]} \mathbf{1}_{(0,\sigma]} X dM^{\sigma}, \qquad W_t := \int_{(0,t]} \mathbf{1}_{(0,\tau]} X dM^{\tau}$$

then $Z^{\sigma\wedge\tau} = W^{\sigma\wedge\tau}$ where we mean that the two processes are indistinguishable.

By lemma 5.22 we have that $\forall k, m \in \mathbb{N}$ almost surely and $\forall t \geq 0$

$$Y_{t\wedge\tau_k\wedge\tau_m}^{\kappa} = Y_{t\wedge\tau_k\wedge\tau_m}^{m} \tag{3}$$

Now let $\Omega_0 = \{ \omega \in \Omega : \lim_{k \to \infty} = \infty, \forall k, m \in \mathbb{N}, \forall t \ge 0 \ (3)$ holds. }. Then $P(\Omega_0) = 1$ by countability of $\mathbb{N} \times \mathbb{N}$.

Definition 33. Let $M \in \mathcal{M}_{2,\text{loc}}^C, X \in \mathcal{L}(M, P)$ and (τ_k) a localizing sequence for (X, M).

Now define the stochastic integral $\forall \omega \in \Omega_0, (X \cdot M)_t(\omega) = Y_t^k(\omega), t \leq \tau_k(\omega)$ and $X \cdot M = 0$ for $\omega \notin \Omega_0$

Remarks:

• The stochastic integral is well defined since $\tau_k(\omega) \to \infty$ and if $t \le \tau_k(\omega) \land \tau_m(\omega)$, then

$$Y_t^k(\omega) = Y_{t \wedge \tau_k \wedge \tau_m}^k(\omega) = Y_{t \wedge \tau_k \wedge \tau_m}^m(\omega) = Y_t^m(\omega)$$

- $(X \cdot M)_t^{\tau_k} = (X \cdot M)_{t \wedge \tau_k} = Y_{\tau_k \wedge t}^K = (Y^k)_t^{\tau_k}$ which is in M_2^C . Thus $X \cdot M \in \mathcal{M}_{2,\text{loc}}^C$ with localizing sequence τ_k
- If we would use another localizing sequence $(\sigma_j)_{j\geq 1}$ for (X, M), this would yield the same $(X \cdot M)$ by lemma 5.22

Example 16 (Example 5.26). Let B be a Brownian Motion, then

$$X\in \mathcal{L}(B,P) \Longleftrightarrow X \text{ predictable and } \forall T<\infty, \text{ a.s. } \int_0^T |X(t,\omega)|^2 \mathrm{d}t <\infty$$

Theorem 50 (Corollary 5.29). Let $M \in \mathcal{M}_{2,loc}^C$ and X continuous and adapted then $X \in \mathcal{L}(M, P)$ and hence $X \cdot M$ is well-defined

Proof. Define $\sigma_k := \inf\{t \ge 0; |X_t| \ge k\}$ and $\tau_k := \inf\{t \ge 0: |M_t| \ge k\}$. Now $\sigma_k \land \tau_k$ is a localizing sequence for $(X \cdot M)$

Standard properties of L^2 -integral extend to the localized setting:

- Linearity continues to hold
- Interchanging stopping times, if $X \in \mathcal{L}(M), Y \in \mathcal{L}(N), \tau$ a stopping time. If almost surely $X_t(\omega) = Y_t(\omega)$ and $M_t(\omega) = N_t(\omega)$ for $t \leq \tau(\omega)$ then $(X \cdot M)_{t \wedge \tau} = (Y \cdot N)_{t \wedge \tau}$

Theorem 51 (Proposition 5.32). Let $M \in \mathcal{M}_{2,loc}^C$ and X be continuous and predictable. Now assume that for all $n \in \mathbb{N}$ $0 \leq \tau_0^n \leq \tau_1^n \leq \ldots$ are stopping times such that almost surely $\delta_n = \sup_i \tau_{i+1}^n - \tau_i^n \to 0$ if $n \to \infty$. Define $R_n(t) = \sum_{i=0}^{\infty} X(\tau_i^n) \left(M(\tau_{i+1}^n \wedge t) - M(\tau_i^n \wedge t)) \right)$, then $R_n \to X \cdot M$ uniform, in probability on compact time intervals.

8.2 Semimartingale integrators

Let Y be a continuous semimartingale, $Y_t = Y_0 + M_t + V_t$ with $M_0 = V_0 = 0$. Technical condition: there exist stopping times σ_n such that $\forall n \in \mathbb{N} : \mathbf{1}_{(0,\sigma_n)}X$ is bounded, where X_0 is not relevant. **Definition 34.** Let Y be a semimartingale and let X be a predictable process for which the technical condition is satisfied. Then we define the integral of X with respect to Y as the process

$$\int_{(0,t]} X dY = \underbrace{\int_{(0,t]} X dM}_{\text{Stochastic integral in}\mathcal{M}_{2,\text{loc}}^C} + \underbrace{\int_{(0,t]} X d\Lambda_v(ds)}_{\text{Stieltjes integral for fixed } \omega}$$

Thus $X \cdot Y$ is a semimartingale again.

By the next lemma the decomposition of Y is unique, thus the stochastic integral is well defined. The well-definedness follows from the uniqueness of decomposition for continuous semimartingales $Y_t = Y_0 + M_t + V_t = Y_0 + N_t + W_t$. Thus $M_t - N_t \in \mathcal{M}_{2,\text{loc}}^C = W_t - V_t$. By the next result we show that $M_t = N_t$ and $W_t = V_t$.

Theorem 52 (Lemma). If $M \in \mathcal{M}_{2,loc}^C$ has finite variation, then $M = M_0$

Rest of 5.3 is selfstudy Proposition 5.36 is not needed because of the above lemma. Non-continuous case is to complicated for this lecture.

9 Itô's lemma

9.1 Quadratic Covariation

The lecture starts with repeating some information about quadratic covariation. I have not reposted the old results, but here are the new results: When the Quadratic Covariation (QCV) exists it behaves like an innerproduct

 $[\alpha X + \beta Y, Z] = \alpha [X, Z] + \beta [Y, Z]$

Theorem 53 (Lemma 5.54). M_n, M, N_n, N are L^2 -martingales and $0 \leq T < \infty$. Furthermore suppose that $M_n(T) \to M(T)$ and $N_n(T) \to N(T)$ in L^2 . Then $\mathbb{E}\left[\sup_{0 \leq t \leq T} |[M_n, N_n]_t - [M, N]_t|\right] \to 0$ as $n \to \infty$

Theorem 54. Let $M, N \in \mathcal{M}_{2,loc}, G \in \mathcal{L}(M, P), H \in \mathcal{L}(N, P)$. Then $[G \cdot M, H \cdot N]_t = \int_{(0,t]} G_s H_s d[M, N]_s$

9.2 Change of integrator/Substitution rule

Theorem 55 (Proposition 5.58). Let $M \in \mathcal{M}_{2,loc}, G \in \mathcal{L}(M, P)$. We already know that $N := G \cdot M \in \mathcal{M}_{2,loc}$. Let $H \in \mathcal{L}(N, P)$. Then $HG \in \mathcal{L}(M, P)$ and $H \cdot N = (HG) \cdot M$

Theorem 56 (Corollary 5.59). Let Y be a cadlag semimartingale and H be predictable satisfying (5.66): there exists a sequence (σ_N) with $\sigma_n \uparrow \infty$ a.s. such that $\mathbf{1}_{(0,\sigma_n]}H$ is bounded for each n.

We know that $X = H \cdot Y$ is a cadlag semimartingale. Let G be predictable satisfying (5.66), then $\int G dX = \int G H dY$

Theorem 57 (Theorem 5.62). Let Y, Z be cadlag semimartingales. G, H predictable satisfying (5.66). Then $[G \cdot Y, H \cdot Z]_t = \int_{(0,t)} G_s H_s d[Y, Z]_t$

Theorem 58 (Proposition 5.63). Let Y, Z be continuous semimartingales and G an adapted, continuous process. Let $\pi = \{0 = t_0 < t_1 < t_2 < \ldots, t_i \uparrow \infty\}$ a partition of $[0, \infty)$.

Then $R_t(n) = \sum_{i=1}^{\infty} G_{t_i}(Y_{t_{i+1}\wedge t} - Y_{t_i\wedge t})(Z_{t_{i+1}\wedge t} - Z_{t_i\wedge t})$ converges to $\int_0^t G_s d[Y, Z]_s$ as $mesh(\pi) \to 0$

This is what we call convergence in probability uniformly on compact intervals.

Theorem 59 (Theorem 5.60). Let Y, Z be continuous semimartingales, then [Y, Z] exists as continuous adapted FV process and:

- 1. $[Y, Z]_t = Y_t Z_t Y_0 Z_0 \int_0^t Y_s dZ_s \int_0^t Z_s dY_s$ which is the stochastic version of integration by parts.
- 2. YZ is continuous semimartingale.
- 3. For continuous $H \int_0^t H_s d(YZ)_s = \int_0^t H_s Y_S dZ_s + \int_0^t H_s Z_s dY_s + \int_0^t H_s d[Y, Z]_s$

9.3 Itô's lemma

Theorem 60 (Theorem 6.1.0). Let $0 < T < \infty$ and :

1. $f \in C^2(\mathbb{R})$, i.e. has a continuous 2nd derivative.

2. Y is a continuous semimartingale with quadratic variation [Y]

Then,

$$f(Y_t) = f(Y_0) + \int_0^t f'(Y_s) dY_s + \frac{1}{2} \int_0^t f''(Y_s) d[Y]_s \qquad \forall 0 \le t \le T$$

Both sides are continuous processes and ' = ' means that both sides are indistinguishable on [0,T], i.e., $\exists \Omega_0, P(\Omega_0) = 1$ such that $\forall \omega \in \Omega_0$ the equality holds for all $0 \le t \le T$.

Generalizations of theorem 6.1

2* Y is callag instead of continuous. Then the integrals become: $\int_0^t f'(Y_{s-}) dY_s + \frac{1}{2} \int_0^t f''(Y_{s-}) d[Y]_s$. An extra term/sum involving the jumps is needed:

$$\sum_{s \in (0,t]} \left\{ f(Y_s) - f(Y_{s-}) - f'(Y_{s-}) \Delta Y_s - \frac{1}{2} f''(Y_{s-}) (\Delta Y_s)^2 \right\}$$

where the sum converges absolutely for a.e. ω . All processes are now cadlag instead of continuous.

1* $f \in C^2(D)$ where D is open in \mathbb{R} . We now need that $Y[0,T] \subseteq D$

 3^* Note that 1^* and 2^* combined is not enough for the theorem.

Remark 6.2: $f(Y_t)$ is a continuous semimartingale.

- **Theorem 61** (Corollary 6.3). (b) If Y is of bounded variation on [0,T] and continuous then $f(Y_t) = f(Y_0) + \int_0^t f'(Y_s) dY_s$. This is the regular, non-stochastic integration theory.
- (c) If $Y_t = Y_0 + B_t$, where B is a standard Brownian Motion independent of Y_0 then

$$f(B_t) = f(Y_0) + \int_0^t f'(Y_0 + B_s) dB_s + \frac{1}{2} \int_0^t f''(Y_0 + B_s) ds$$

9.4 Itô's formula in time and space

Theorem 62 (Theorem 6.1.1). Let $0 < T < \infty$, $f \in C^{1,2}([0,T], \mathbb{R})$ i.e. f(t,x) is continuous differentiable in 1st variable and twice continuous differentiable in the 2nd varbiable. Furthermore Y is a continuous semimartingale with quadratic variation [Y]. Then:

We now generalize this theory to the *d*-dimension vector valued variant.

Theorem 63 (Theorem 6.5). Let $0 < T < \infty$, $f \in C^{1,2}([0,T], D)$ where D is open in \mathbb{R}^d . Furthermore Y is \mathbb{R}^d -valued and a continuous semimartingale such that $\overline{Y([0,T])} \subseteq D$ almost surely. Then:

$$\begin{split} f(t,Y(t)) &= f(0,Y(0)) + \int_0^t f_t(s,Y(s)) \, ds + \sum_{i=1}^d \int_0^t f_{x_i}(s,Y(s)) \, dY(s) \\ &+ \frac{1}{2} \sum_{1 \le i,j \le d} \int_0^t f_{x_i x_j}(s,Y(s)) \, d[Y_i,Y_j](s) \end{split}$$

Short hand notation:

$$df(t, Y(t)) = f_t(t, Y(t))dt + \sum_{i=1}^d f_{x_i}(t, Y(t))dY(t) + \frac{1}{2} \sum_{1 \le i,j \le d} f_{x_i x_j}(t, Y(t))d[Y_i, Y_j](t)$$

We have the special case that $Y(t) = B(t) = (B_1(t), \ldots, B_d(t))$, the *d*-dimensional Brownian Motion. Notation:

- $f \in C^{1,2}(([0,T] \times \mathbb{R}^d))$
- $\nabla_x f = (f_{x_1}, \dots, f_{x_d})$ the gradient vector
- $\Delta_x f = \nabla_x \cdot \nabla_x f = \sum_{i=1}^d f_{x_i, x_i}$, the Laplacian

Theorem 64 (Corollary 6.7). Let B(t) be d-dimensional Brownian Motion, $f \in C^{1,2}([0,T] \times \mathbb{R}^d)$

Then

$$f(t, B(t)) = f(0, B(0)) + \int_0^t \left(f_t(s, B(s) + \frac{1}{2}\Delta_x f(s, B(s))) \right) ds + \int_0^t \nabla_x f(s, B(s)) dB(s)$$

10 Itô's formula

The continuous semimartingale class is preserved after transformation of f(t, Y(t)). This may not be the case if we work with martingales.

For $f \in C^1(\mathbb{R})$ such that $F(x) = \int_0^x f(y) dy$ we have that $\int_0^t f(B_s) dB_s = F(B_t) - \frac{1}{2} \int_0^t f'(B_s) ds$, which is the path-wise interpretation.

The short hand notation is $df(B_t) = f'(B_t)dB_t + \frac{1}{2}f''(B_t)dt$. This notation has no meaning, only through the integrated version.

Application of Itô formula: Beautiful and useful results can be derived from special choices of f.

Preservation of Martingale property

Suppose that Y(t) is continuous martingale property Suppose that Y(t) is continuous martingale and $f \in C^{1,2}([0,T] \times \mathbb{R})$. Ito: $f(t,Y(t)) = f(0,Y(0)) + \int_0^t (f_t + \frac{1}{2}f_{xx}) (s,Y(s))d[Y]_s + \int_0^t f_x(s,Y(s))dY(s)$. If 2nd term on the right hand side is zero, then it is at least a local martingale. When is $\int_0^t f_x(s,Y(s))dY(s)$ a martingale? One sufficient condition is for example, Y is continuous L^2 -martingale and $f_x(s,Y(s)) \in \mathcal{L}_2(M,P)$.

Theorem 65 (Lemma 6.9). Suppose $f \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R})$ and $f_t + \frac{1}{2}f_{xx} = 0$. Let B_t be a one-dimensional standard Brownian Motion. Then $f(t, B_t)$ is local L^2 -martingale. If further $\int_0^T \mathbb{E} \left[f_x^2(t, B_t) \right] dt < \infty$ then $f(t, B_t)$ is an L^2 -martingale on [0, T]

This lemma can be extended to the d-dimensional Brownian Motion. When is a local martingale a martingale?

- **Exercise 3.7** X a nonnegative local martingale with $\mathbb{E}[X_0] < \infty$. X is a martingale $\iff \mathbb{E}[X_t] = \mathbb{E}[X_0]$ for all t > 0
- **Exercise 3.8** M is a right-continous local martingale and $M_t^* \in L^1(P)$ then M is a martingale

Corollary A continuous local martingale which is bounded a.s. is a martingale.

Example 17. Some applications of Lemma 6.9:

- $f(t,x) = x^2 t \Rightarrow B_t^2 t$ is a martingale.
- $f(t,x) = e^{\alpha x \frac{1}{2}\alpha^2 t}$ then $f_x = \alpha f$, $f_{xx} = \alpha^2 f$ and $f_t = -\frac{1}{2}\alpha^2 f = -\frac{1}{2}f_{xx}$ and therefore $e^{\alpha B_t - \frac{1}{2}\alpha^2 t}$ is a martingale.

Example 18 (Exit time of Brownian Motion with drift.). We have $X_t = \mu t + \sigma B_t$ with $\mu \in \mathbb{R}, \sigma \in \mathbb{R}, \sigma \neq 0$. $\tau = \inf\{t > 0 : x_t = a \text{ or } x_t = b\}$ where a < 0, b > 0. What is $P(X_{\tau} = b)$?

Propositions 6.11 and 6.12 are about recurrent/transience properties of Brownian Motion.

- One dimensional BM is (point) recurrent.
- Two dimensional BM is not point recurrent, but neighbourhood recurrent.
- d-dimensional BM $(d \ge 3)$ is transient.

Theorem 66 (Theorem 6.14). Let M be a continuous \mathbb{R}^d -valued local martingale and X(t) = M(t) - M(0) such that X(0) = 0. Then X is a standard Brownian Motion relative to \mathcal{F}_t iff $[x_i, X_j](t) = \delta_{i,j}t$ in particula X is independent of \mathcal{F}_0

10.1 SDEs

Recall ordinary differential equations (ODE). For example it may be of the form $\dot{x} = f(t, x)$, equivalently dx(t) = f(t, x(t))dt.

SDE: The stochastic variant will involve in the simplest case a dB_t term. For example, $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$.

We have seen earlier this type of equations as short hand notation for Ito formula. But there given $X_t = f(t, B_t)$ we derived this short hand notation formula.

Now we have to do the reverse. Given this 'formula'/SDE, does there exist a process X_t which satisfy this equation? Recall that this short-hand notation must be interpreted through integral form. That is still the case.

Definition 35. Let (Ω, \mathcal{F}, P) be a complete filtered probability space, and (B_t) is a standard Brownian motion defined on it. Suppose $\mu, \sigma : [0, T] \times \mathbb{R} \to \mathbb{R}$ are measurable and η is an \mathcal{F}_0 -measurable random variable. A stochastic process $(X_t), t \in [0, T]$ defined on (Ω, \mathcal{F}, P) is called a *strong solution* of the SDE: $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$ with initial condition $X_0 = \eta$ if the following assertions are true:

- 1. X_t is continuous and \mathcal{F}_t -adapted
- 2. $\int_0^T |\mu(t, X_t)| dt + \int_0^T |\sigma(t, X_t)|^2 dt < \infty \text{ almost surely.}$
- 3. For each $t \in [0,T]$: $X_t = \eta + \int_0^t \mu(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_S$ almost surely.

Note that condition 2. assures that the integrals in 3. are well defined. So given an SDE questions are about existence of a solution, if it exists, then uniqueness of it; and not unimportant, the properties of the solutions.

In an SDE: $dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t$, μ is called drift/instantaneous growth term and σ^2 is called the diffusion coefficient/instantaneous variance.

Example 19 (7.3). Consider the SDE $dX_t = \mu X_t dt + \sigma X_t dB_t$ with $X_0 = x_0 \in \mathbb{R}$.

Let's see if $X_t = f(t, B_t)$ can be a solution to such SDE. Applying Itô formula to $f(t, B_t)$ we have,

$$\mathbf{d}[f(t,B_t)] = \left[f_t(t,B_t) + \frac{1}{2}f_{xx}(t,B_t)\right]\mathbf{d}t + f_x(t,B_t)\mathbf{d}B_t$$

so if there exists f such that

$$f_t + \frac{1}{2}f_{xx} = \mu \cdot f$$
 and $f_x = \sigma f$

then $X_t = f_t(t, B_t)$ will be a solution.

 $f_x = \sigma f \Rightarrow f(t, x) = g(t)e^{\sigma x}$ where g is some function of t only. Plugging this into the 1st expression yields: $\frac{g'(t)}{g(t)}f + \frac{\sigma^2}{2}f = \mu f$. So if there exists a g(t) such that $\frac{g'}{g} = \frac{1}{2}\sigma^2 - \mu$ then it will do.

But $\frac{g'}{g} = \mu - \frac{1}{2}\sigma^2 \Rightarrow g = ce^{(\mu - \frac{1}{2}\sigma^2)t}$ where *c* is the integration constant. So $f(t,x) = ce^{(\mu - \frac{1}{2}\sigma^2)t + \sigma x}$. Now consider $X_t = f(t,B_t) = ce^{(\mu - \frac{1}{2}\sigma^2)t + \sigma B_t}$. It is not difficult (using Itô) that all conditions in the definition of a solution are satisfied.

To make sure that initial condition is satisfied one needs $c = x_0$. hence the complete solution is $X_t = x_0 e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma B_t}$. If X_0 was a random variable η (which must be \mathcal{F}_0 -measurable and hence inde-

If X_0 was a random variable η (which must be \mathcal{F}_0 -measurable and hence independent of $(B_t)_{t>0}$) then $X_t = \eta e^{(\mu - \frac{1}{2}\sigma^2)t + \sigma B_t}$

This is one solution, are there any other solutions? That would be answered with no via a general result

Properties

 $\mathbb{E}[X_t] = \mathbb{E}[\eta] e^{\mu t}$ which grows exponentially assuming that $\mathbb{E}[\eta] \neq 0$, but $X_t = \eta e^{t((\mu - \frac{1}{2}\sigma^2) + \sigma \frac{B_t}{t})}$. The strong law of large numbers says that $\frac{B_t}{t} \to 0$ a.s. thus if $(\mu - \frac{1}{2}\sigma^2) < 0$ then $X_t \to 0$ a.s. as $t \to \infty$.

Here is another example of a sequence of random variables which converges to 0 a.s. but is expectations converge to ∞ .

Example 20 (7.2 (Ornstein Uhlenbeck process).

$$\mathrm{d}X_t = -\alpha X_t \mathrm{d}t + \sigma \mathrm{d}B_t \qquad X_0 = x_0$$

Show that a solution of the form $X_t = f(t, B_t)$ does not exist. So we need to use a different technique. Multiply both sides by the integrating factor $Z_t = e^{\alpha t}$. Then apply Itô formula to $(ZX)_t$ to obtain the solution:

$$X_t = x_0 e^{-\alpha t} + \int_0^t \sigma e^{-\alpha(t-s)} \mathrm{d}B_s$$

11 Applications of Itô's formula

Brownian Bridge(Example 7.4) For fixed 0 < t < 1:

$$\mathrm{d}X_t = -\frac{X_t}{1-t}\mathrm{d}t + \mathrm{d}B_t$$
 with $X_0 = x_0$

has the solution $X_t = x_0 + e^{-\alpha t} + \sigma(1-t) \int_0^t \frac{1}{1-s} dB_s$. X_t is defined on [0,1) and $X_t \to 0$ as $t \uparrow 1$. X_t is a Brownian motion conditioned at the end (t = 1) to be also zero.

 $X_t = B_t - tB_1$ is also a Brownian bridge

Theorem 67 (Theorem 7.8). Consider the SDE on the given space (Ω, \mathcal{F}, P) :

$$dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t, t \in [0, T]; X_0 = \xi \in \mathcal{F}_0$$

Suppose the coefficients b and σ satisfy the Lipschitz condition:

$$|b(t,x) - b(t,y)|^{2} + |\sigma(t,x) - \sigma(t,y)|^{2} \le L|x-y|^{2}$$

for some constant L > 0 and the spatial **Growth condition**

$$|b(t,x)|^{2} + |\sigma(t,x)|^{2} \le L(1+|x|^{2})$$

Then there exists a continuous, adapted process X which is a solution of the SDE. Furthermore, the process X is **unique** up to indistinguishability, i.e. if X_t and Y_t are both solutions of the SDE then $P(X_t = Y_t \text{ for all} t \in [0, T]) = 1$

Some useful results are listed below:

Theorem 68 (Gronwall's Lemma (Lemma A.20)). Let g be an integrable Borel function on [a, b] and f a non-decreasing function on [a, b]. Suppose there is a constant c such that

$$g(t) \le f(t) + c \int_{a}^{t} g(s) ds \qquad \forall t \in [a, b]$$

Then $g(t) \leq f(t)e^{c(t-a)}$

Theorem 69 (Doob's maximum inequality). For square integrable continuous martingale M, and $0 < T < \infty$

$$\mathbb{E}\left[\sup_{0 \le t \le T} |M_t|^2\right] \le 4\mathbb{E}\left[|M_T|^2\right]$$

Theorem 70 (Theorem 7.12). Suppose ξ, η are \mathcal{F}_0 -measurable random variables. Assume b and σ satisfy the Lipschitz condition. Suppose X and Y are solutions to the same SDE with coefficients b and σ but with possibly different initial values ξ and η , respectively. Then X and Y are indistinguishable, on the event $\{\xi = \eta\}$, i.e., $P((X_t - Y_t)\mathbf{1}_{\{\xi = \eta\}} = 0, \forall t \in [0, T]) = 1$

Now a very long proof of this theorem followed, which I think is not relevant.

Theorem 71 (Theorem 7.14). Suppose b and σ are continuous functions of (t, x) satisfying the growth and Lipschitz conditions.

Let X be the strong solution of the SDE with coefficients b and σ (and with \mathcal{F}_0 -measurable ξ as initial value) on the filtered probability space (Ω, \mathcal{F}, P) with B a Brownian motion on it.

Let \tilde{X} be the strong solution corresponding to the SDE with same coefficients b and σ but corresponding to $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P}), \tilde{B}, \tilde{\xi}$.

Suppose $\xi = \hat{\xi}$ in distribution.

Then the processes X and \tilde{X} have the same probability distribution. I.e., for any measurable set A of $C_{\mathbb{R}^d}[0,T]$, $P(X \in A) = \tilde{P}(\tilde{X} \in A)$

In the absence of the growth and Lipschitz conditions one may not always be able to find a (strong) solution defined on the given probability space (Ω, \mathcal{F}, P) It is however, sometimes possible to define/construct

- 1. Another (filtered) probability space $(\Omega^*, \mathcal{F}^*, P^*)$
- 2. An SBM B_t^* on the new filtered space
- 3. An \mathcal{F}_0 -measurable ξ^* with probability distribution same as that of ξ
- 4. A continuous adapted process X_t^* w.r.t. the new filtered space such that

$$\int_{0}^{T} |b(t, X_{t}^{*})| \mathrm{d}t + \int_{0}^{T} |\sigma(t, X_{t}^{*})|^{2} \mathrm{d}t < \infty$$

and

$$X_t^* = \xi^* + \int_0^t b(s, X_s^*) d + \int_0^t \sigma(s, X_s^*) dB_s^*$$

Then $(\Omega^*, \mathcal{F}^*, P^*, \xi^*, (B_t^*), (X_t^*))$ is called the *weak solution* of the SDE

$$\mathrm{d}X_t = b(t, X_t)\mathrm{d}t + \sigma(t, X_t)\mathrm{d}B_t$$

12 Girsanov's theorem

The main question of this section is: "Can a stochastic process with drift be viewed as one without drift? Or be transformed into one?"

$$X_t = \int_0^t \sigma_s \mathrm{d}B_s \qquad Y_t = \int_0^t \mu_s \mathrm{d}s + \int_0^t \sigma_s \mathrm{d}B_s$$

Because X_t is a martingale, it is easier to analyze then Y_t !

Monte Carlo Integration

The Riemann sum is given by $\int_0^1 f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(x_i)$ for $x_i = \frac{i-1}{n}$. Monte Carlo integration is the same concept but now random variables are used to approximate the integral: $\int_0^1 f(x) dx \approx \frac{1}{n} \sum_{i=1}^n f(X_i)$ for $X_i \sim \text{Unif}[0, 1]$. Now the Strong Law of Large Numbers yields that if X_i 's are i.i.d. with finite expectation μ , then $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{n \to \infty} \mathbb{E}[X]$ almost surely. Therefore we can approximate $\mathbb{E}[f(x)]$ by drawing large samples X_1, \ldots, X_n from the distribution of X and considering the sum $\frac{1}{n} \sum_{i=1}^n f(X_i)$

$$\int f(x)p(x)dx = \mathbb{E}\left[f(x)\right] \approx \frac{1}{n} \sum_{i=1}^{n} f(X_i), \qquad X_i \sim p(x)$$

In theory this is a very nice idea, but in practice it doesn't work for most cases. Let's see for example the case that we are interested in P(X > 30) for $X \sim N(0, 1)$. Then we can approximate this probability by $P(X > 30) = \mathbb{E}[f(x)]$ for $f(x) = \mathbf{1}_{(30,\infty)}$ so that we have:

$$P(X > 30) = \mathbb{E}[f(X)] \approx \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{(30,\infty)}, \qquad X_i \sim N(0,1)$$

If we define D to be the number of draws before the first hit $(x_i > 30)$, then $\mathbb{E}[D] > 10^{100}$. So in practice this approximation is quite useless.

Importance Sampling

For this problem *importance sampling* has been invented. By importance sampling we convert the problem so we can sample from more easy distributions:

$$\int f(x)p(x)dx = \int f(x)\frac{p(x)}{q(x)}q(x)dx = \int g(x)q(x)dx$$
$$\mathbb{E}^{P}\left[f(X)\right] = \mathbb{E}^{Q}\left[g(X)\right] = \mathbb{E}^{Q}\left[f(X)\frac{p(X)}{q(X)}\right]$$

In order to apply importance sampling fruitfully we need the ability to draw sample from density q(x), the ability to calculate $\frac{p(x)}{q(x)}$ and q(x) > 0 whenever p(x) > 0 (or equivalently $q(x) = 0 \iff p(x) = 0$) If we get back to our previous example, for $p \sim N(0, 1)$; $q \sim N(\mu, 1)$ such that $p(x)/q(x) = e^{-\mu x + \frac{1}{2}\mu^2}$ and $P(X > 30) \approx \frac{1}{n} \sum_{i=1}^{n} \left[\mathbf{1}_{\{X_i > 30\}} e^{-\mu X_i + \frac{1}{2}\mu^2} \right]$, where $X_i \sim N(\mu, 1)$. So choosing a suitable value for μ improves the approximation.

Change of Measure

So if we have the same random variable, but we want a different probability distribution? In that we case we define them on different probability measures. Consider $\Omega = \mathbb{R}$ equipped with the Borel σ -algebra \mathcal{B} and a random variable $X : \Omega \to \mathbb{R}$ given by $X(\omega) = \omega$.

Consider probability measures on (Ω, \mathcal{B}) , given by:

- $P_1((a,b]) = (b \wedge 1) \vee 0 (a \wedge 1) \vee 0$
- $P_2((a,b]) = \Phi(b) \Phi(a)$

Under $P_1, X \sim U(0, 1)$ and under $P_2, X \sim N(0, 1)$

Now consider a probability space (Ω, \mathcal{F}, P) and a random variable X defined on it such that $X \sim N(0, 1)$ under P. For some $\mu \in \mathbb{R}$, let $Z = e^{\mu X - \frac{1}{2}\mu^2}$, then Z > 0 and $\mathbb{E}[Z] = 1$. Define a new measure Q on $(\Omega, \mathcal{F}$ by $Q(A) = \mathbb{E}[\mathbf{1}_A Z]$ for $A \in \mathcal{F}$. Now Q is a probability measure and under $Q, X \sim N(\mu, 1)$.

Theorem 72 (Girsanov Theorem). Suppose (B_t) is a d-dimensional Brownian Motion defined on the complete filtered probability space $(\Omega, \mathcal{F}, P), 0 < T < \infty$ is fixed and H is an adapted measurable \mathbb{R}^d -valued process such that $\int_0^T |H(t)|^2 dt < \infty$ almost surely under P.

Let $Z_t = Z_t(H) = \exp\left\{\int_0^t H(s) dB(s) - \frac{1}{2}\int_0^t |H(s)|^2 ds\right\}.$

- Assume that $\{Z_t, t \in [0,T]\}$ is martingale. (Equivalent assumption: $\mathbb{E}[Z_T] = \mathbb{E}^P[Z_t] = 1.$)
- Define the probability measure $Q = Q_T$ on \mathcal{F}_T as $dQ = Z_T dP$
- Define the process $W(t) = B(t) B(0) \int_0^t H(s) ds$

Then $\{W(t), t \in [0, T]\}$ is a d-dimensional Brownian Motion on the probability space $(\Omega, \mathcal{F}_T, Q)$ w.r.t. the filtration $\{\mathcal{F}_t\}_{t \in [0,T]}$

Remark 1: $M_t = \int_0^t H(s) dB_s$ is a continuous local martingale. Then Itô formula says that $Z_t = 1 + \int_0^t Z_s dM_s = 1 + \int_0^t Z_s H_s dB_s$ such that Z_t is a continuous local martingale.

Remark 2: $Z_T \ge 0 \Rightarrow Q$ is a positive measure and Z_t is martingale $\Rightarrow \mathbb{E}^P[Z_T] = \mathbb{E}^P[Z_0] = 1$ hence Q is a probability measure.

A Useful Observation

For $t \in \mathbb{R}_+$, define Q_t on (Ω, \mathcal{F}_t) as $dQ_t = Z_t dP$. Suppose that Z_t is a martingale. Then the family of measure $\{Q_t\}$ satisfy certain consistency properties: Let s < t and $A \in \mathcal{F}_s \subset \mathcal{F}_t$

$$Q_t(A) = \mathbb{E}^P \left[\mathbf{1}_A Z_t \right] = \mathbb{E}^P \left[\mathbb{E}^P \left[\mathbb{k}_A Z_t | \mathcal{F}_s \right] \right]$$
$$= \mathbb{E}^P \left[\mathbf{1}_A \mathbb{E}^P \left[Z_t | \mathcal{F}_s \right] \right] = \mathbb{E}^P \left[\mathbf{1}_A Z_s \right]$$
$$= Q_s(A)$$

Example 21 (Application 1). Let B_t be a standard Brownian Motion; $\alpha < 0, \mu \in \mathbb{R}$ and σ : first time B_t hits the (space-time) line $a - \mu t$. What is the probability distribution of σ ?

- Define $X_t = B_t + \mu t$. Then $\sigma = \inf\{t \ge 0 : B_t = a \mu t\} = \inf\{t \ge 0; X_t = a\}$
- Use Girsanov's theorem with $H(s) = -\mu$ such that $Z_t = e^{-\mu B_t \mu^2 t/2}$ and note that Z_t is indeed a martingale. Now $Q_t(A) = \mathbb{E}^P [\mathbf{1}_A Z_t]$. such that $\{X_s, 0 \le s \le t\}$ is a standard Brownian Motion under Q_t .
- Since $Z_t > 0$, it holds that $P(A) = \mathbb{E}^Q \left[\mathbf{1}_A Z_t^{-1} \right]$, for $A \in \mathcal{F} \left[dQ_t = Z_t dP \Leftrightarrow dP = Z_t^{-1} dQ_t \right]$

 $Z_t^{-1} = e^{\mu B_t + \mu^2 t/2} = e^{\mu X_t - \mu^2 t/2}$

•

$$P(\sigma > t) = P\left(\inf_{0 \le s \le t} X_s > a\right) = \mathbb{E}^Q \left[\mathbf{1}_{\{\inf_{0 \le s \le t} X_s > a\}} Z_t^{-1}\right]$$

= $\mathbb{E}^Q \left[\mathbf{1}_{\{\inf_{0 \le s \le t} X_s > a\}} e^{\mu X_t - \mu^2 t/2}\right]$
= $e^{-\mu^2 t/2} \mathbb{E}^Q \left[\mathbf{1}_{\{\sup_{0 \le s \le t} (-X_s) < -a\}} e^{-\mu(-X_t)}\right]$
= $e^{-\mu^2 t/2} \mathbb{E}^P \left[\mathbf{1}_{\{\sup_{0 \le s \le t} M_t < -a\}} e^{-\mu B_t}\right]$ where $M_t = \sup_{0 \le s \le t} B_t$

• The joint distribution of (B_t, M_t) is known.

Theorem 73 (Theorem 8.13). Suppose H is adapted, measurable with $\int_0^T |H(t)|^2 dt < \infty$ almost surely under P. The process $Z_t - \exp\left\{\int_0^t H(s) dB(s) - \frac{1}{2}\int_0^t |H(s)|^2 ds\right\}$ (which is a positive local martingale, and hence a supermartingale) is martingale under any of the following conditions:

- H(t) is non-random
- $((H(t)) \text{ and } (B_t) \text{ are mutually independent processes.}$
- $\{H(t), t \in [0, T]\}$ is bounded
- $\int_0^T |H(s)|^2 ds \le C < \infty$ almost surely
- Novikov conditon: $\mathbb{E}\left[e^{\frac{1}{2}\int_0^T |H(s)|^2 ds}\right] < \infty$

Theorem 74 (Theorem 8.17). Let $0 < T < \infty$, $b : [0,T] \times \mathbb{R}^d \to \mathbb{R}^d$ Borel measurable and B_t a d-dimensional standard Brownian Motion. Consider the SDE:

$$dX_t = b(t, X_t)dt + dB_t \qquad \text{with } X_0 \sim \nu$$

If b is bounded, then the SDE has a weak solution for any initial distribution ν on \mathbb{R}^d