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1 Measures, Integrals, and Foundations of Prob-
ability Theory

1.1 Measure theory and Integration

Definition 1. A family F of subsets of Ω is called a σ−algebra if:

1. Ω ∈ F and ∅ ∈ F

2. A ∈ F ⇒ Ac ∈ F

3. A1, A2, · · · ∈ F → ∪∞n=1An ∈ F

Example 1. Some examples of σ-algebra’s:

• {∅,Ω} is a trivial σ-algebra.

• The power set 2Ω, which is the collection of all subsets of A is a σ-algebra.

Example 2. Given a family of sets A, there is a smallest σ-algebra which
contains A. Notation: σ(A), called the σ-algebra generated by A.

Example 3. The Borel σ-algebra of Rd, (notation B(Rd)) is the σ-algebra
generated by all open sets in Rd.

Example 4. Let f : Ω→ R be a function. Let {f ∈ B} = {ω ∈ Ω : f(ω) ∈ B}.
The collection O(f) := {{f ∈ B} : B ∈ B(R)}} is a σ-algebra in Ω. It is called
the σ-algebra generated by f .

Let (Ω,F) be a measurable space. f : Ω → R is called measurable/Borel
measurable if ∀B ∈ B it holds that {f ∈ B} ∈ F .

• Sums, product, etc. of measurable functions are measurable.

• Limits, countable suprema and infima are measurable.

Definition 2. A mapping: µ : f → [0,∞] is called a measure if

1. µ(∅) = 0
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2. ∀ disjoint A1, A2, · · · ∈ F then µ (∪∞n=1An) =
∑∞
n=1 µ(An)

Caratheodory extension Theorem:

Definition 3. For a given set Ω, we may define a ring R as a subset of the
powerset of Ω which has the following properties

• ∅ ∈ R

• For all A,B ∈ R we have A ∪B ∈ R

• For all A,B ∈ R we have A \B ∈ R

This theorem states that if there exists a measure µ on a ring R then there exists
a measure µ∗ on the sigma algebra of that ring such that µ∗ is an extension of
µ (That is, µ∗|R = µ)

Dynkin uniqueness of measure

Definition 4. Let Ω be a nonempty set, and let D be a collection of subsets of
Ω. Then D is a λ-system if

1. Ω ∈ D

2. If A,B ∈ D and A ⊆ B, then B \A ∈ D.

3. If A1, A2, A3, . . . is a sequence of subsets in D and An ⊆ An+1 for all
n ≥ 1 then

⋃∞
n=1An ∈ D

Equivalently, D is a π-system if

1. Ω ∈ D

2. If A ∈ D then Ac ∈ D.

3. If A1, A2, A3, . . . is a sequence of subsets in D and Ai ∩ Aj = ∅ for all
i 6= j then

⋃∞
n=1An ∈ D

An important fact is that a λ-system which is also a π-system (i.e. closed under
finite intersection) is a σ-algebra.

Theorem 1 (Dynkin’s π−λ theorem). If P is a π-system and D is a λ-system
with P ⊆ D then σ(P ) ⊆ D. In other words the σ-algebra generated by P is
contained in D.

Completion of measure There are certain technical benefits to having the
following property in a measure space (X,F , µ) called completion: if N ∈ F
satisfies µ(N) = 0, then every subset of N is measurable and then of course has
measure zero.
It turns out that this can always be arranged by a simple enlargement of the
σ-algebra. Let

F̄ = {F ∈ X : there exists B,N ∈ F and F ⊆ N such that µ(N) = 0 and A = B∪F}
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1.2 Lebesgue measure

There exists a measure on (Rd,B(Rd)) which satisfies µ([a1, b1)×· · ·× [ad, bd) =∏d
n=1(bn − an).

Integration: f =
∑
i ci1Ai then

∫
fdµ =

∑
i ciµ(Ai).

The power of Lebesgue-integration lies in the fact that one can prove conver-
gence theorems such as monotone convergence and dominated convergence.

Theorem 2 (Monotone convergence theorem). Let fn be nonnegative mea-
surable functions, ans assume fn ≤ fn+1 almost everywhere, for each n. Let
f = limn→∞ fn. This limit exists at least almost everywhere. Then.∫

fdµ = lim
n→∞

fndµ

Theorem 3 (Dominated convergence theorem). Let fn be measurable functions,
and assume the limit f = limn→∞ fn exists almost everywhere. Assume there
exists a function g ≥ 0 such that |fn| ≤ g almost everywhere for each n and∫
gdµ <∞. Then ∫

fdµ = lim
n→∞

fndµ

Lp-spaces: For a Borel-measurable function f : Ω→ R let ||f ||Lp =
(∫
|f |pdµ

) 1
p .

Let Lp(Ω,F , µ) = {f : Ω→ R measurable : ||f ||p <∞}. Then Lp is a vector
space. ||.||Lp is not a norm because ||f ||Lp = 0 6⇒ f = 0. Let f ∼ g if f = g
almost everywhere, which is an equivalence relation. Then Lp = Lp\ ∼ becomes
a normed space. Moreover Lp is a complete space.
Hölder’s inequality: ||f · g||L1 ≤ ||f ||Lp · ||g||Lq for 1

p + 1
q = 1

Theorem 4 (Fubini’s theorem). Let f ∈ L1(µ ⊗ ν). Then fx ∈ L1(ν) for
µ-almost every x, fy ∈ L1(µ) for ν-almost every y, g ∈ L1(µ) and h ∈ L1(ν).
Iterated integration as follows, is valid:

∫
X×Y

fd(µ⊗ ν) =

∫
X

{∫
Y

f(x, )ν(dy)

}
µ(dx)

=

∫
Y

{∫
X

f(x, y)µ(dx)

}
ν(dy)

1.3 Probability spaces

We call (Ω,F , P ) a probability space if P (Ω) = 1.

Definition 5. X : Ω→ R is called a random variable if it is measurable.

Definition 6. σ-algebras F1,F2, . . . are independent if

P

(
n⋂
i=1

Ai

)
=

n∏
i=1

P (Ai) ∀Ai ∈ Fi ∀i ≤ n ∀n ∈ N

Definition 7. X1, X2, . . . , : Ω → R are independent if σ(X1), σ(X2), . . . , are
independent.
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Image measure: X : Ω→ Rd, µX(B) = P (X ∈ B), B ∈ B(Rd)
Expectation: E [X] =

∫
Ω
XdP

Theorem 5. X1, . . . , Xn : Ω → R are independent ⇐⇒ the distribution of
(X1, . . . , Xn) is µ = µX1

× · · · × µXn

Theorem 6. If X and Y are independent, then E [XY ] = E [X]E [Y ] and
X ∈ Lp, Y ∈ Lp′ then 1

p + 1
p′ = 1

Proof. µX(B) = P (X ∈ B), µY (B) = P (Y ∈ B) then

E [X] · E [Y ] =

∫ ∫
xydµX(x)dµY (y)

=︸︷︷︸
Fubini

∫ ∫
xydµX × µY (x, y)

=︸︷︷︸
independence

E [XY ]

Definition 8. Almost surely (a.s.) means with probability 1

Definition 9. Let {Xn} be a sequence of random variables and X a random
variable, all real valued.

1. Xn → X almost surely if

P
{
ω : lim

n→∞
Xn(ω) = X(ω)

}
= 1

2. Xn → X in probability if for every ε > 0

lim
n→∞

P {ω : |Xn(ω)−X(ω)| ≥ ε} = 0

3. Xn → X in Lp for 1 ≤ p <∞ if

lim
n→∞

E [|Xn(ω)−X(ω)|p] = 0

4. Xn → X in distribution (also called weakly) if

lim
n→∞

P (Xn ≤ x) = P (X ≤ x)

for each x at which F (x) is continuous.

Theorem 7 (Theorem 1.21). Let {Xn} and X be real-valued random variables
on a common probability space.

1. If Xn → X almost surely or in Lp for some 1 ≤ p <∞, then Xn → X in
probability.

2. If Xn → X in probability, then Xn → X weakly.

3. If Xn → X in probability, then there exists a subsequence Xnk
such that

Xnk
→ X almost surely.

4. Suppose Xn → X in probability. Then Xn → X in L1 if and only if {Xn}
is uniformly integrable.
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1.4 Conditional Expectations

Example 5. Let (Ω,F , P ) be a probability space. Let x1, . . . , xm, z, . . . , zn ∈ R
be distinct. Now let X : Ω → {x1, . . . , xm}, Z : Ω → {z1, . . . , zn}. Recall:

P (X = xi|Z = zj)
def
=

P (X=xi,Z=zj)
P (Z=zj) and E [X|Z = zj ] =

∑m
i=1 xiP (X = xi|Z =

zj) = 1
P (Z=zj)

∫
{Z=zj}XdP .

A possible definition of Y = E [X|Z] could be Y : Ω→ R, Y =
∑n
j=1 Yj1{Z=zj},

where Yj = E [X|Z = zj ].
How to extend this to general X? Let A = σ(Z)
Observation 1: Y is constant on sets {Z = zj} thus Y is A-measurable.
Observation 2:

∫
Y dP = yj · P (Z = zj) =

∫
{Z=zj}XdP . Thus ∀G ∈ G :∫

G
Y dP =

∫
G
XdP

Definition 10. Let (Ω,F , P ) be a probability space. Let X ∈ L1(P ) and let
A ⊆ F be a sub-σ-algebra.
We say that Y : Ω→ R is the conditional expectation of X given A if:

1. Y is A-measurable.

2. Y ∈ L1(P ) and ∀A ∈ A
∫
A
Y dP =

∫
A
xdP

Notation: Y (ω) = E [X|A] (ω) or E [X|A]

Note that E [E [X|A]] = E [X]

Theorem 8 (Uniqueness). If Y and Ỹ are both conditional expectations of X
given A then Y = Ỹ a.s.

Proof. Let ∆Y = Y−Ỹ . Then ∆Y isA-measurable and ∀A ∈ A :
∫
A

∆Y dP = 0
Let A1 = {∆Y ≥ 0} and A2 = {∆Y < 0}. Then E [|∆Y |] =

∫
A1

∆Y dP −∫
A2

∆Y dP = 0− 0 = 0. Thus |∆Y | = 0 a.s., thus Y = Ỹ a.s.

Definition 11. In this case Y and Ỹ are called versions of E [X|A]

Theorem 9. Properties of conditional expectation Let (Ω,F , P ) be a probability
space. Let X,Y ∈ L1(P ),A,B ⊆ F be sub-σ-fields. Then:

1. E [E [X|A]] = E [X]

2. (Linearity) E [αX + βY |A] = αE [X|A] + βE [Y |A], α, β ∈ R

3. (Positivity) If X ≥ Y then E [X|A] ≥ E [Y |A].

4. If X is A-measurable then E [X|A] = X.

5. (Taking out what is known). If X is A-measurable and XY ∈ L1(P ), then
E [XY |A] = XE [Y |A]

6. (Independence) If X and A are independent, then E [X|A] = E [X]

7. (Tower property) If A ⊆ B, then E [E [X|B] |A] = E [X|A] and also E [E [X|A] |B] =
E [X|A] by 4.

8. If A ⊆ B and E [X|B] is A-measurable, then E [X|B] = E [X|A].
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9. (Jensen’s inequality) Let f : (a, b) → R be convex, −∞ ≤ a < b <≤ ∞.
Assume that a < X < b. a.s. and f(X) ∈ L1(P ) Then: f(E [X|A] ≤
E [f(X)|A]

Proof. Simple exercises: 1,2,4,6,8
Good exercises: 3,5,7
Too difficult: 9,10
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2 Stochastic Processes

Let (Ω,F , P ) be a probability space. From now on we will assume that F is
complete, i.e. if N ∈ A satisfies µ(N) = 0, then every subset of N is measurable
(and then of course has measure zero).

Definition 12. A filtration on (Ω,F , P ) is a family of σ-fields (Ft)t≥0 such
that Fs ⊆ Ft ⊆ F ,∀0 ≤ s < t <∞.

Definition 13. A process X : R× Ω→ R if BµF
×F-measurable.

Notation: (Xt)t≥0, (t, ω)→ Xt(ω) or X(t, ω)

Example 6. (Xt)t≥0 a stock price. A possible filtration FXt = σ(Xs : s ∈ [0, t]),
our knowledge at time t.

Convention: Ft contains all null sets of F otherwise replace Ft by F̄t = {B ∈
F : ∃A ∈ Ft s.t. P (A∆B) = 0} where A∆B is the symmetric difference.

Definition 14. (Xt)t≥0 is called adapted to (Ft)t≥0 if ∀t ≥ 0 : ω → Xt(ω) is
Ft-measurable.

Definition 15. (Xt)t≥0 is called progressively measurable if ∀T ≥ 0 X restricted
to [0, T ]× Ω is B[0,T ]

Observation: X progressively measurable ⇒ X is adapted.

Definition 16. (Xt)t≥0, (Yt)t≥0 are called modifications or versions if ∀t ≥
0, P (Xt = Yt) = 1.
(Xt)t≥0, (Yt)t≥0 are called indistinguishable if P (Xt = Yt,∀t ≥ 0) = 1.

Theorem 10. Assume X is adapted to (Ft)t≥0 and X is left or right-continuous,
then X is progressively measurable.

Definition 17. X is called cadlag if it has right-continuous paths and ∀ω ∈ Ω :
∀t > 0 : lims↑tXs(ω) exists.
caglad left-continuous and right limits exists.

Theorem 11. Assume X,Y are right-continuous. Assume: S ⊆ R+ is dense
and countable. If ∀t ∈ S: P (Xt = Yt) = 1, then X and Y are indistinguishable.
Similar for left-continuous if 0 ∈ S.

Proof. Let ∀s ∈ S: Vs = {Xs = Ys}. Then P (Vs) = 1. Let Ω0 =
⋂
s∈S Vs, then

P (Ω0) = 1.
Claim: ∀ω ∈ Ω0,∀t > 0 Xt = Yt thus P (Xt = Yt,∀t > 0) = P (Ω0) = 1.

Definition 18. τ : Ω → [0,∞] is called a stopping time if ∀t ∈ (0,∞) : {τ <
t} ∈ Ft

Example 7. First time a stock price is > 100.
First time a stock price is lower than the price a week before.

Theorem 12. X adapted and continuous, H ∈ R is closed. Define: τH(ω) =
inf{τ ≥ 0 : Xt(ω) ∈ H}, then τH is a stopping time.
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2.1 Quadratic variation

We start with bounded variation from section 1.1.9.
Given F : [a, b] → R, define: VF (t) := sup{

∑n
i=1 |F (Si) − F (Si−1)| : a = S0 <

S1 < · · · < Sn = b}. F has bounded variation if VF (b) <∞.
Observation: VF (0) = 0, Vf is non-decreasing.
Notation: BV[a, b] is space of functions of bounded variation.

Theorem 13. F ∈ BV[a, b]⇐⇒ F is the difference of two nondecreasing func-
tions: F = F1 − F2.

Lebesgue-Stieltjes integral: F increasing on [a, b] then Λf (u, v] = F (v) −
F (u) extends to a positive Borel measure ΛF on [a, b], which is called the
Lebesgue-Stieltjes measure.
Notation:

∫
(a,b]

gdΛF or
∫

(a,b]
g(x)dF (x) for the Lebesgue-Stieltjes integral.

Careful if F has a jump in t, then ΛF ({t}) = F (t)− F (t−).

An idea for quadratic variation is
∑

(F (Si)− F (Si−1))2, but we want more.
Given π(t) = {0 = t0, . . . , tm = t} a mesh on [0, t] and process Y . Let

V 2
y (π(t)) =

∑m−1
i=0

∣∣Yti+1
(ω)− Yti(ω)

∣∣2.
We say that V 2

Y converges in probability to process Z if ∀ε > 0∃δ > 0 : ∀t >
0,∀π(t),mesh(π) < δ ⇒ P (|V 2

Y (π(t))− Zt| > ε) < ε
Notation: [Y ]t = limmesh(π)→0 V

2
Y (π(t)) in probability.

Definition 19. [Y ] = ([Y ]t)t≥0 is called the quadratic variation process of Y if

• the limit exists.

• There exists a version of [Y ] s.t. ∀ω : t→ [Y ]t(ω) is nondecreasing.

Definition 20. [X,Y ] = 1
4 [X + Y ]− 1

4 [X − Y ] if the right hand side exists.

lim
mesh→0

∑
i

(Xti+1 −Xti)(Yti+1 − Yti) = [X,Y ]t

where we use the fact that 1
4 (a+ b)2 − 1

4 (a− b)2 = ab
Also: [X,Y ]t = 1

2 ([X + Y ]t − [X]− [Y ])

Theorem 14. If X,Y are cadlag and [X,Y ] exists then [X,Y ] has a cadlag
modification and ∆[X,Y ]t = (∆Xt)(∆Yt). Here ∆Zt = Zt − Zt− for Z cadlag.

Theorem 15. |[X,Y ]t − [X,Y ]s| ≤ ([X]t − [X]s)
1
2 ([Y ]t − [Y ]s)

1
2

Theorem 16 (Kunita-Watanabe inequality). Assume that [X], [Y ], [X,Y ] exist
and are right-continuous. Then for bounded and measurable functions G,H :
[0, T ]× Ω→ R

∣∣∣∣∣
∫

[0,T ]

G(t, ω)H(t, ω)d[X,Y ]t(ω)

∣∣∣∣∣
≤

(∫
[0,T ]

G(t, ω)2d[X]t(ω)

)1/2(∫
[0,T ]

H(t, ω)2d[Y ]t(ω)

)1/2
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Remark: by a Radon-Nikodym derivative this result also holds iwth

∣∣∣∣∣
∫

[0,T ]

G(t, ω)H(t, ω)|Λ[X,Y ](ω)|dt

∣∣∣∣∣
≤

(∫
[0,T ]

G(t, ω)2d[X]t(ω)

)1/2(∫
[0,T ]

H(t, ω)2d[Y ]t(ω)

)1/2
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3 Brownian motion

Definition 21. Let (Ω,F , P ) be a probability space with filtration (Ft)t≥0.
A process (Bt)t≥0 is called a one-dimensional Brownian motion w.r.t. (Ft)t≥0

if:

1. For almost all ω ∈ Ω : t→ Bt(ω) is continuous.

2. ∀0 ≤ s ≤ t, Bt − Bs is independent of Fs and has a normal distribution
with E [Bt −Bs] = 0 and E

[
(Bt −BS)2

]
= t− s

If additionally 3. B0 = 0 a.s. then B is called a standard Brownian motion.

Theorem 17. Assume (Ω,F , P ) is rich enough. Then there exists a process
(Bt)t≥0 such that (Bt)t≥0 is a standard Brownian Motion w.r.t. (Ft)t≥0

Two pages about the construction of Brownian Motion - Not relevant
I think.

Theorem 18. Let (Bt)t≥0 be a Brownian Motion w.r.t. (Ft)t≥0. Then ∀s ≤ t
we have that E [Bt|Fs] = Bs and E

[
B2
t − t|Fs

]
= B2

s − s

Proof. We start with noticing that E [Bt −Bs|Fs] = E [Bt −Bs] = 0. There-
fore E [Bt|Fs] = E [Bt −Bs +Bs|Fs] = Bs. And E

[
(Bt −Bs)2|Fs

]
= t − s

thus E
[
B2
t − 2BtBs +B2

s |Fs
]

= t − s and E [BtBs|Fs] = BsE [Bt|Fs] = B2
s .

Conclusion: E
[
B2
t |Fs

]
−B2

s = t− s

Theorem 19. [B]t = t, moreover for all partitions π we have that

E


m(π)−1∑

i=0

(Bti+1
−Bti)2 − t

2
 ≤ 2tmesh(π)

Thus
∑m(π)−1
i=0 (Bti+1

−Bti)2 → t in L2(p) and in P as mesh(π)→ 0.

Theorem 20. Almost surely for all T > 0, the path t 7→ Bt(ω) is not a member
of BV[0, T ].
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4 Uniform integrability and Martingales

4.1 Uniform integrability

Definition 22. A collection C of random variables is called uniformly integrable
(UI) if

lim
r→∞

sup
Z∈C

∫
{|Z|>r}

|Z|dP = 0

Example 8. If X ∈ L1, then C = {X} is UI.

Example 9. If X ∈ L1 then C = {Z : Ω→ R : |Z| ≤ |X| a.s. } is UI.

Theorem 21. Let p > 1. If C ⊆ Lp and K := supZ∈C ||Z||Lp < ∞ then C is
UI.

Example 10. Ω = [0, 1], P is Lebesgue-measure. Xn = n1
[0,

1
n ]

, n ≥ 1. Then

C = {Xn : n ∈ N} is not UI.
Indeed, given r > 0 choose n > r. Then

∫
{|Xn|>r} |Xn|dP =

∫
|Xn|dP = 1.

Thus supX∈C
∫
{|Xn|>r} |Xn|dP = 1 for all r > 0.

Theorem 22. Let (Ω,F , P ) be a probability space. Let X ∈ L1(P ) and define
C := {E [X|G] : G ⊆ F}. Then C is uniformly integrable.

Theorem 23 (Bounded convergence theorem). Assume Xn → X in probability.
Assume ∃K > 0 : ∀n ∈ N,∀ω ∈ Ω|Xn(ω)| ≤ K, then Xn → X in L1

Theorem 24. Let Xn, X ∈ L1.

Xn → X in L1 ⇐⇒

{
Xn → X in probability.

{Xn : n ≥ 1} is UI.

4.2 Martingales

Definition 23. (Mt)t≥0 is called a martingale w.r.t. (Ft)t≥0 if

1. Mt ∈ L1(P )

2. (Mt) is (F)t-adapted.

3. ∀0 ≤ s < t : E [Mt|FS ] = Ms almost surely

Submartingale: Replace 2. by E [Mt|FS ] ≥Ms

Supermartingale: Replace 2. by E [Mt|FS ] ≤Ms

Note that E [Mt|Fs] ≥Ms ⇐⇒ ∀A ∈ FsE [1AMt] ≥ E [1AMs]
M is called square integrable if ∀t ≥ 0 : E

[
M2
t

]
<∞. The discrete definition is

analogue.

Theorem 25. If (Mt)t≥0 is a martingale and φ is convex and ∀t > 0 : φ(Mt) ∈
L1 then φ(Mt) is a submartingale.

Proof. Jensen’s inequality for s < t: E [φ(Mt)|Fs] ≥ φ(E [Mt|Fs]) = φ(Ms).

11



4.3 Optional stopping

We extend the times used in the definition of martingales to stopping times.
Notation: x ∧ y = min{x, y} and x ∨ y = max{x, y}.
First the discrete case:

Theorem 26 (Lemma 3.4). Let M be a submartingale. Assume that τ and σ
are stopping times whose values lie in an ordered countable set {s1 < s2 < s3 <
. . . } ∪ {∞} where sn →∞. Then for any T <∞,

E [Mτ∧T |Fσ] = Mσ∧τ∧T

Theorem 27 (Lemma 3.5). Let M be a submartingale with right-continuous
paths and T <∞. Let ρ be a stopping time with P (ρ < T ) = 1. Then:

E [Mρ] ≤ 2E
[
M+
T

]
− E [M0]

so Mρ ∈ L1.

Theorem 28. Let M be a right-continuous submartingale. Let σ, τ be stopping
times, T <∞. Then E [Mτ∧T |Fσ] ≥ Mσ∧τ∧T . Note the integrability by lemma
3.5

Theorem 29 (Corollary 3.7). Suppose (Mt)t≥0 is a right-continuous (sub)martingale
and τ is a stopping time. Then Mτ = (Mt∧τ )t≥0 is a right-continuous (sub)martingale.
If M is an L2 martingale, then Mτ is as well.

Theorem 30 (Corollary 3.8). Suppose M is a right-continuous submartingale.
Let {σ(u) : u ≥ 0} be nondecreasing, [0,∞)-values process such that σ(u) is a
bounded stopping time for each u. Then {Mσ(u) : u ≥ 0} is a submartingale
with respect to the filtration {Fσ(u) : u ≥ 0}
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5 Further investigating martingales

5.1 Inequalities and limits

Towards Doob’s inequality:

Theorem 31 (Lemma 3.9). Let M be a submartingale, 0 < T < ∞ and H a
finite subset of [0, T ]. Then for all r > 0

P ({max
t∈H

Mt ≥ r}) ≤ r−1E
[
M+
T

]
and

P ({min
t∈H

Mt ≤ r}) ≤ r−1(E
[
M+
T

]
− E [M0])

Theorem 32 (Doobs mean). Let M be a right-continuous submartingale and
0 < T <∞. Then for all r > 0:

P ({sup
t∈H

Mt ≥ r}) ≤ r−1E
[
M+
T

]
and

P ({ inf
t∈H

Mt ≤ r}) ≤ r−1(E
[
M+
T

]
− E [M0])

Theorem 33 (Doob’s Inequality). Let M be a nonnegative, right-continuous
submartingale and 0 < T <∞. Then for 1 < p <∞

E
[

sup
0≤t≤T

Mp
t

]
≤
(

p

p− 1

)p
E [Mp

T ]

P

(
sup

0≤t≤T
Mt ≥ C

)
≤

E [Mp
T ]

Cp

Example 11. For example if (Nt) is a right-continuous martingale, we can
apply Doob’s inequality on Mt = |Nt|.

Most important cases of martingale convergence: Mt is a martingale with
supt<∞ E [|Mt|] <∞ thenM∞ = limt→∞Mt exists almost surely andM∞ ∈ L1.
Convergence need not be in L1. This holds if and only if {Mt : t ≥ 0} is
uniformly integrable.

5.2 Local martingales and semimartingales

Notation: For process X, τ a stopping time we denote with Xτ
t = Xt∧τ . Xτ is

called the stopped process.

Definition 24. Mt is called a local martingale if

1. Mt is (Ft) adapted.

13



2. There exists a sequence of stopping times (τk)∞k=1 such that τ1 ≤ τ2 ≤
. . . , τk →∞ a.s. and ∀k : Mτk is a martingale.

(τk)k is called a localizing sequence for M .
M is called a local square integrable martingale if 1., 2. and Mτk ∈ L2 for all k.

Remark: If M has continuous paths, we can take τk = inf{t ≥ 0 : |Mt| ≥ k} as
a localizing sequence. Moreover |Mτk

t | ≤ k

Definition 25. A cadlag process Y is called a semimartingale if there exists a
local martingale M with M0 = 0 and there exists a finite variation process V
with V0 = 0 such that Yt = Mt + Vt + Y0 for all t ≥ 0.

Continuous semimartingale: if additionally M,V are continuous.

5.3 Quadratic variation for Semimartingales

Remember that [B]t = t for a Brownian Motion and [B, Y ]t = 0 if B, Y are
independent Brownian Motions.

Theorem 34 (Theorem 3.26). Let M be a right-continuous local martingale,
then [M ] exists and there is a version of [M ] which is:

• real-valued (so no ∞)

• right-continuous

• nondecreasing

• adapted

• [M ]0 = 0

If M is an L2 −martingale then limmesh(π)→0

∑m(π)−1
i=0 |Mti+1 −Mti |2 → [M ]t

is in L1 and E [[M ]t] = E
[
M2
t −M2

0

]
If M is continuous, then [M ] has a version, which is continuous.

Theorem 35 (Lemma 3.27). Let M be a right-continuous local martingale.
Let τ be a stopping time. Then [Mτ ] = [M ]τ . This means that for all t ≥ 0 :
[Mτ ]− T = [M ]τ∧t

Theorem 36 (Theorem 3.28). If M is a right-continuous (local) L2-martingale
then M2 − [M ] is as well.

If M,N are right-continuous (local) L2-martingales then [M,N ] also exists and
[Mτ , N ] = [Mτ , Nτ ] = [M,N ]τ .
Moreover MN − [M,N ] is also a (local) L2-martingale again.

Theorem 37 (Corallary 3.31). Let M be a cadlag local martingale, V a cadlag
FV process M0 = V0 = 0, and Y = Y0 + M + V the cadlag semimartingale.
Then [Y ] exists and is given by:

[Y ]t = [M ]t + 2[M,V ]t + [V ]t

Furthermore, [Y τ ] = [Y ]τ

14



6 Spaces of martingales and Stochastic Integra-
tion

6.1 Spaces of martingales

From now on only continuous L2-martingalesMC
2 and sometimes localMC

2,loc.
Remind from analysis: C[a, b] with ||f ||∞ = supt∈[a,b] |f(t)| is complete. Fur-

thermore L2(p) is complete. ||X||L2 =
(
E
[
|X|2

]) 1
2

Possible norm on martingales on [0, T ] would be ||MT ||L2 . But note that for all
t ∈ [0, T ]||Mt||L2 ≤ ||MT ||L2 , even more: || supt∈[0,T ] |Mt|||L2 ≤ 2||MT ||L2

Thus (M (n))n≥1 sequence such that M
(n)
T is Cauchy in L2(p) implies ∀ε > 0

P

(
sup
t∈[0,T ]

|M (n)
t −M (m)

t | ≥ ε

)
≤

E
[
|M (n)

T −M (m)
T |2

]
ε2

by Doob’s inequality. This is called (M (n))n≥1 is uniformly Cauchy in probabil-
ity. After some calculations we find that ||MT ||L2 could become ∞ for T →∞.
Therefore we define

||M ||MC
2

:=

∞∑
k=1

2−k(1 ∧ ||Mk||L2)

but there are many other equivalent choices possible.
This is not a norm because ||aM ||MC

2
6= |a| · ||M ||MC

2
but dM2

(M,N) = ||M −
N ||MC

2
is a metric.

Theorem 38 (Theorem 3.40). Let (Ft) be complete. Then MC
2 is a complete

metric space under the metric dM2 .

Theorem 39. If M (n) →M in MC
2 , then:

∀T <∞,∀ε > 0 : lim
n→∞

P ( sup
t∈[0,T ]

|M (n)
t −Mt| ≥ ε) = 0

This is called uniform convergence on compact intervals.
Furthermore there exists a subsequence (M (nk)) and Ω0 ⊆ Ω such that P (Ω0) =
1 and for each ω ∈ Ω0,∀T <∞

lim
n→∞

sup
0≤t≤T

|M (nk)
t (ω)−Mt(ω)| = 0

6.2 Stochastic integration of predictable processes

We only consider
∫
XdY with Y continuous to simplify the presentation in the

lectures.

Definition 26. ρ is the smallest σ-algebra which contains (s, t] × F with 0 ≤
s < t <∞, F ∈ Fs and {0} × F0 with F0 ∈ F0

ρ is called predictable σ-algebra
(s, t]× F is called predictable rectangle.

15



Theorem 40 (Lemma 5.1). A process is ρ-measurable if and only if it can be
approximated by (left)-continuous adapted processes

Proof. We proof that a left-continuous adapted process X is ρ-measurable.
Rewrite Xn(t, ω) = X0(ω)1{0} +

∑∞
i=0Xi2−n1[i2−n,(i+1)2−n](t)

Now {Xn ∈ B} = {0} × {X0 ∈ B}︸ ︷︷ ︸
∈ρ

∪
⋃∞
i=0 (i2−n, (i+ 1)2−n]× {Xi2−n ∈ B}︸ ︷︷ ︸

∈ρ

. Thus

{Xn ∈ B} ∈ ρ, thus Xn is ρ-measurable.
Also by left continuity Xn → X on [0,∞)× Ω thus X is ρ-measurable.

Remarks: Not all right-continuous adapted processes are predictable.
X : [0,∞)→ R with the Borel-measure is predictable.

Doleans measure: µM on ρ Let M ∈ MC
2 then Doleans measure is defined

as:

µM (A) =

∫
Ω

∫
[0,∞)

1A(t, ω)d[M ]t(ω)dP (ω)

The meaning of this formula is that first, for each fixed ω, the function t 7→
1A(t, ω) is integrated by the Lebesgue-Stieltjes measure Λ[M ](ω) of the function
t 7→ [M ]t(ω). The resulting integral is a measurable function of ω, which is then
averaged over the probability space.
Convention: Λ[M ](ω)({0}) = 0.

Note: µM ([0, T ]× Ω) = E [[M ]t − [M ]0] = E
[
M2
t

]
− E

[
M2

0

]
<∞ thus µM is a

σ-finite measure.

Example 12. Assume (Bt)t is a standard Brownian Motion and µB = m ⊗ p
wherem is the Lebesgue measure. Indeed: µB(B) =

∫
Ω

∫
[0,∞)

1A(t, ω)dtdP (ω) =

m⊗ P (A)

Definition 27. For X : R+ × Ω→ R predictable:

||X||µM,T
=

(∫
[0,T ]×Ω

|X|2dµM

) 1
2

= E

[∫
[0,T ]

|X(t)|2d[M ]t

]
L2 = L2(M,P ) is the set of all predictable X such that ∀T <∞ : ||X||µM,T

<∞
A metric on L2 is defined as:

dL2
(X,Y ) = ||X − Y ||L2

with

||X||L2 =

∞∑
k=1

2−k(1 ∧ ||X||µM ,k)

Here we identify processes which are µM almost everywhere equal.

Example 13. Let (Bt)t≥0 be a Brownian Motion and X a predictable process.
Then we have that X ∈ L2 if and only if

∀T <∞ : X ∈ L2((0, T ]× Ω)

16



Example 14. Let M ∈ MC
2 . If ∀T < ∞∃CT ,∀ω, t|Xt(ω)| ≤ CT and X

predictable, then X ∈ L(M,P ).
Indeed,

E

[∫
[0,T ]

|X(s)|2d[M ]s

]
≤ E

[∫
[0,T ]

C2
Td[M ]S

]
= C2

TE [[M ]T − [M ]0]

= C2
TE
[
M2
T −M2

0

]
<∞

6.3 Construction of the stochastic integral

Our goal is to define (X ·M)t :=
∫

(0,t]
XdM for X ∈ L2(M,P )

Step 1 X ∈ S2 a simple predictable process.

Step 2 Prove L2-isometry for X ·M

E
[
|(X ·M)T |2

]
= ||X||µM ,T for X ∈ S2

Step 3 Approximation/density argument for X ∈ L2(M,P ). Here complete-
ness of MC

2 plays a crucial role.

Step 4 Localization: no integrability conditions on Ω

Step 5 Extension to continuous semimartingales.

Definition 28. A process X of the form:{
Xt(ω) = ξ0(ω)1{0}(t) +

∑n−1
i=1 ξi(ω)1(ti,ti+1](t)

with 0 = t0 < t1 < · · · < tn and ξi is Fti-measurable.

is called a simple predictable process, notation X ∈ S2
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7 Stochastic Integration

7.1 Step 1,2 and 3

Definition 29. A process X of the form:{
Xt(ω) = ξ0(ω)1{0}(t) +

∑n−1
i=1 ξi(ω)1(ti,ti+1](t)

with 0 = t0 < t1 < · · · < tn and ξi is Fti-measurable.

is called a simple predictable process, notation X ∈ S2

Theorem 41 (Lemma 5.6). X of the form is indeed predictable

Proof. By linearity it suffices to consider ξ1(a,b] with ξ F-measurable. Now ap-
proximate ξ by simple random variables to get predictable rectangles. Similarly
for ξ1{0}

Definition 30. For X a simple predictable process and M ∈ MC
2 we define

the stochastic integral to be:

(X ·M)t(ω) =

n−1∑
i=1

ξi(ω)
(
Mti+1∧t(ω)−Mti∧t(ω)

)
Remarks: The value at zero of X and M are irrelevant. Adding a F0-measurable
random variable to M does not change the stochastic integral.
Two other notations:

∫ t
0
XdM and I(X) for X ·M .

Theorem 42 (Lemma 5.8). 1. The stochastic integral does not depend on
its representation.

2. The integral is linear.

Theorem 43. Let X ∈ S2, M ∈ MC
2 , then X ·M ∈ MC

2 and the following
L2-isometries hold:

||(X ·M)t||L2(Ω,P ) = ||X||L2((0,t)×Ω,µM ) (1)

||X ·M ||MC
2

= ||X||L2 (2)

Now we continue with step 3:

Theorem 44 (Lemma 5.10). For any X ∈ L2 there exists a sequence (Xn)n≥1 ∈
S2 such that limn→∞ ||X −Xn||L2

= 0

Definition 31. Take M ∈ MC
2 and X ∈ L2(M). Choose (Xn)n≥1 ∈ S2 such

that ||X −Xn||L2 → 0. Now we define the stochastic integral for X to be

(X ·M)t = lim
n→∞

(Xn ·M)t

Existence of limit. (Xn)n≥1 exists by lemma 5.10. Also:

||Xn ·M −Xm ·M ||MC
2

= ||(Xn −Xm) ·M ||MC
2

= ||Xn −Xm||L2

≤ ||Xn −X||L2
+ ||X −Xm||L2

→ 0
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Thus (Xn ·M)n≥1 is a Cauchy sequence in MC
2 hence converges by the com-

pleteness of MC
2 . Thus limn→∞Xn ·M exists in MC

2

Uniqueness: Take Zn ∈ S2 such that Zn → X in L2. Then

||Xn ·M − Zn ·M ||MC
2

= ||(Xn − Zn) ·M ||MC
2

= ||Xn − Zn||L2

≤ ||Xn −X||L2
+ ||Zn −X||L2

→ 0

Thus (Zn ·M)n≥1 has the same limit as (Xn ·M)n≥1 inMC
2 . Thus (X ·M)t is

unique up to indistinguishability.

Theorem 45 (Proposition 5.12). Let M ∈ MC
2 , X ∈ L2(M) then ∀t < ∞

||(X ·M)t||L2(Ω,P ) = ||X||L2((0,t)×Ω,µM
and ||X ·M ||MC

2
= ||X||L2(M)

In particular, if X = Y , µM -almost surely, then X ·M and Y ·M are indistin-
guishable.

Proof. Just take limits in lemma 5.9. Als use the reverse triangle inequality:

|||φ|| − ||ψ||| ≤ ||φ− ψ||

Properties of the stochastic integral

Theorem 46 (Proposition 5.14). This proposition gives some properties
of the stochastic integral:

1. Linearity:
(αX + βB) ·M = α(X ·M) + β(Y ·M)

2. For any 0 ≤ u ≤ v, ∫
(0,t]

1[0,v]XdM =

∫
(0,v∧t]

XdM

and ∫
(0,t]

1(u,v]XdM = (X ·M)v∧t − (X ·M)u∧t =

∫
(u∧t,v∧t]

XdM

3. For s < t we have a condition form of the isometry:

E
[
((X ·M)t − (X ·M)s)

2|Fs
]

= E

[∫
(s,t]

X2
ud[M ]u|Fs

]
Theorem 47 (Proposition 5.19). Let M,N ∈M2, α, β ∈ R, and X ∈ L2(M,P )∩
L2(N,P ). Then X ∈ L2(αM + βN,P ) and

X · (αM + βN) = α(X ·M) + β(X ·N)
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8 Stochastic Integration

8.1 Step 4 and 5

Last time we considered M ∈MC
2 , the continuous L2-martingale and (X ·M) ∈

MC
2 for X ∈ L2(M).

Here X ∈ L2(M)⇐⇒ ∀T <∞X ∈ L2((0, T )× Ω,dµM )

Theorem 48 (Proposition 5.16).

((1[0,τ ]X) ·M)t = (X ·M)τ∧t = (X ·Mτ )t

Today we only want to assume;

• M ∈M2,locC

• X ∈ L2((0, T ), [M ]) almost surely for all T <∞

but the problem is that there is no integrability in Ω.

Example 15. Xt = eB
4
t , M = X · B should exist and what is M? And what

about (Y ·M)t?

Recall that M ∈MC
2,loc ⇐⇒ there exists a localizing sequence σk ↑ ∞ such that

Mσk ∈MC
2

Definition 32. Let M ∈MC
2,loc. We say X ∈ L(M,P ) if X is predictable and

there exists stopping times 0 ≤ τ1 ≤ τ2 ≤ ... such that

1. P (limk→∞ τk =∞) = 1

2. Mτk ∈MC
2 for all k

3. 1[0,τk]X ∈ L(Mτk , P for all k.

In this case (τk) is called a localizing sequence for (X ·M).
Remark: 1[0,τk] is predictable, because it is adapted and left-continuous.

Now the idea is to define (X ·M) locally:

Y k = (1[0,τk]X ·Mτk)

and let k →∞. Here k is an index.

Theorem 49 (Lemma 5.22). M ∈ MC
2,loc, X predictable. If τ, σ are stopping

times such that Mσ,Mτ ∈MC
2 and 1[0,σ]X ∈ L2(Mσ), 1[0,τ ]X ∈ L2(Mτ ).

Define :

Zt :=

∫
(0,t]

1(0,σ]XdMσ, Wt :=

∫
(0,t]

1(0,τ ]XdMτ

then Zσ∧τ = Wσ∧τ where we mean that the two processes are indistinguishable.

By lemma 5.22 we have that ∀k,m ∈ N almost surely and ∀t ≥ 0

Y kt∧τk∧τm = Y mt∧τk∧τm (3)

Now let Ω0 = {ω ∈ Ω : limk→∞ = ∞,∀k,m ∈ N,∀t ≥ 0 (3) holds. }. Then
P (Ω0) = 1 by countability of N× N.
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Definition 33. Let M ∈ MC
2,loc, X ∈ L(M,P ) and (τk) a localizing sequence

for (X,M).
Now define the stochastic integral ∀ω ∈ Ω0, (X ·M)t(ω) = Y kt (ω), t ≤ τk(ω) and
X ·M = 0 for ω 6∈ Ω0

Remarks:

• The stochastic integral is well defined since τk(ω)→∞ and if t ≤ τk(ω)∧
τm(ω), then

Y kt (ω) = Y kt∧τk∧τm(ω) = Y mt∧τk∧τm(ω) = Y mt (ω)

• (X · M)τkt = (X · M)t∧τk = Y Kτk∧t = (Y k)τkt which is in MC
2 . Thus

X ·M ∈MC
2,loc with localizing sequence τk

• If we would use another localizing sequence (σj)j≥1 for (X,M), this would
yield the same (X ·M) by lemma 5.22

Example 16 (Example 5.26). Let B be a Brownian Motion, then

X ∈ L(B,P )⇐⇒ X predictable and ∀T <∞, a.s.

∫ T

0

|X(t, ω)|2dt <∞

Theorem 50 (Corollary 5.29). Let M ∈MC
2,loc and X continuous and adapted

then X ∈ L(M,P ) and hence X ·M is well-defined

Proof. Define σk := inf{t ≥ 0; |Xt| ≥ k} and τk := inf{t ≥ 0 : |Mt| ≥ k}. Now
σk ∧ τk is a localizing sequence for (X ·M)

Standard properties of L2-integral extend to the localized setting:

• Linearity continues to hold

• Interchanging stopping times, if X ∈ L(M), Y ∈ L(N), τ a stopping time.
If almost surely Xt(ω) = Yt(ω) and Mt(ω) = Nt(ω) for t ≤ τ(ω) then
(X ·M)t∧τ = (Y ·N)t∧τ

Theorem 51 (Proposition 5.32). Let M ∈ MC
2,loc and X be continuous and

predictable. Now assume that for all n ∈ N 0 ≤ τn0 ≤ τn1 ≤ . . . are stopping
times such that almost surely δn = supi τ

n
i+1 − τni → 0 if n→∞.

Define Rn(t) =
∑∞
i=0X(τni )

(
M(τni+1 ∧ t)−M(τni ∧ t)

)
, then Rn → X ·M uni-

form, in probability on compact time intervals.

8.2 Semimartingale integrators

Let Y be a continuous semimartingale, Yt = Y0 +Mt + Vt with M0 = V0 = 0.
Technical condition: there exist stopping times σn such that ∀n ∈ N : 1(0,σn)X
is bounded, where X0 is not relevant.
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Definition 34. Let Y be a semimartingale and let X be a predictable process
for which the technical condition is satisfied. Then we define the integral of X
with respect to Y as the process∫

(0,t]

XdY =

∫
(0,t]

XdM︸ ︷︷ ︸
Stochastic integral inMC

2,loc

+

∫
(0,t]

XdΛv(ds)︸ ︷︷ ︸
Stieltjes integral for fixed ω

Thus X · Y is a semimartingale again.
By the next lemma the decomposition of Y is unique, thus the stochastic integral
is well defined. The well-definedness follows from the uniqueness of decomposi-
tion for continuous semimartingales Yt = Y0 + Mt + Vt = Y0 + Nt + Wt. Thus
Mt − Nt ∈ MC

2,loc = Wt − Vt. By the next result we show that Mt = Nt and
Wt = Vt.

Theorem 52 (Lemma). If M ∈MC
2,loc has finite variation, then M = M0

Rest of 5.3 is selfstudy Proposition 5.36 is not needed because of the above
lemma. Non-continuous case is to complicated for this lecture.
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9 Itô’s lemma

9.1 Quadratic Covariation

The lecture starts with repeating some information about quadratic covariation.
I have not reposted the old results, but here are the new results:
When the Quadratic Covariation (QCV) exists it behaves like an innerproduct

[αX + βY, Z] = α[X,Z] + β[Y,Z]

Theorem 53 (Lemma 5.54). Mn,M,Nn, N are L2-martingales and 0 ≤ T <
∞. Furthermore suppose that Mn(T )→M(T ) and Nn(T )→ N(T ) in L2.
Then E

[
sup0≤t≤T |[Mn, Nn]t − [M,N ]t|

]
→ 0 as n→∞

Theorem 54. Let M,N ∈M2,loc, G ∈ L(M,P ), H ∈ L(N,P ).
Then [G ·M,H ·N ]t =

∫
(0,t]

GsHsd[M,N ]s

9.2 Change of integrator/Substitution rule

Theorem 55 (Proposition 5.58). Let M ∈ M2,loc, G ∈ L(M,P ). We already
know that N := G ·M ∈ M2,loc. Let H ∈ L(N,P ). Then HG ∈ L(M,P ) and
H ·N = (HG) ·M

Theorem 56 (Corollary 5.59). Let Y be a cadlag semimartingale and H be
predictable satisfying (5.66): there exists a sequence (σN ) with σn ↑ ∞ a.s.
such that 1(0,σn]H is bounded for each n.
We know that X = H · Y is a cadlag semimartingale. Let G be predictable
satisfying (5.66), then

∫
GdX =

∫
GHdY

Theorem 57 (Theorem 5.62). Let Y, Z be cadlag semimartingales. G,H pre-
dictable satisfying (5.66). Then [G · Y,H · Z]t =

∫
(0,t])

GsHsd[Y,Z]t

Theorem 58 (Proposition 5.63). Let Y,Z be continuous semimartingales and
G an adapted, continuous process. Let π = {0 = t0 < t1 < t2 < . . . , ti ↑ ∞} a
partition of [0,∞).

Then Rt(n) =
∑∞
i=1Gti(Yti+1∧t−Yti∧t)(Zti+1∧t−Zti∧t) converges to

∫ t
0
Gsd[Y,Z]s

as mesh(π)→ 0
This is what we call convergence in probability uniformly on compact intervals.

Theorem 59 (Theorem 5.60). Let Y,Z be continuous semimartingales, then
[Y,Z] exists as continuous adapted FV process and:

1. [Y,Z]t = YtZt−Y0Z0−
∫ t

0
YsdZs−

∫ t
0
ZsdYs which is the stochastic version

of integration by parts.

2. Y Z is continuous semimartingale.

3. For continuous H
∫ t

0
Hsd(Y Z)s =

∫ t
0
HsYSdZs+

∫ t
0
HsZsdYs+

∫ t
0
Hsd[Y,Z]s

23



9.3 Itô’s lemma

Theorem 60 (Theorem 6.1.0). Let 0 < T <∞ and :

1. f ∈ C2(R), i.e. has a continuous 2nd derivative.

2. Y is a continuous semimartingale with quadratic variation [Y ]

Then,

f(Yt) = f(Y0) +

∫ t

0

f ′(Ys)dYs + 1
2

∫ t

0

f ′′(Ys)d[Y ]s ∀0 ≤ t ≤ T

Both sides are continuous processes and ′ =′ means that both sides are indistin-
guishable on [0, T ], i.e., ∃Ω0, P (Ω0) = 1 such that ∀ω ∈ Ω0 the equality holds
for all 0 ≤ t ≤ T .

Generalizations of theorem 6.1

2* Y is cadlag instead of continuous. Then the integrals become:
∫ t

0
f ′(Ys−)dYs+

1
2

∫ t
0
f ′′(Ys−)d[Y ]s. An extra term/sum involving the jumps is needed:∑

s∈(0,t]

{
f(Ys)− f(Ys−)− f ′(Ys−)∆Ys − 1

2f
′′(Ys−)(∆Ys)

2
}

where the sum converges absolutely for a.e. ω. All processes are now
cadlag instead of continuous.

1* f ∈ C2(D) where D is open in R. We now need that Y [0, T ] ⊆ D

3* Note that 1* and 2* combined is not enough for the theorem.

Remark 6.2: f(Yt) is a continuous semimartingale.

Theorem 61 (Corollary 6.3). (b) If Y is of bounded variation on [0, T ] and

continuous then f(Yt) = f(Y0) +
∫ t

0
f ′(Ys)dYs. This is the regular, non-

stochastic integration theory.

(c) If Yt = Y0 +Bt, where B is a standard Brownian Motion independent of Y0

then

f(Bt) = f(Y0) +

∫ t

0

f ′(Y0 +Bs)dBs + 1
2

∫ t

0

f ′′(Y0 +BS)ds

9.4 Itô’s formula in time and space

Theorem 62 (Theorem 6.1.1). Let 0 < T <∞, f ∈ C1,2([0, T ],R) i.e. f(t, x)
is continuous differentiable in 1st variable and twice continuous differentiable in
the 2nd varbiable. Furthermore Y is a continuous semimartingale with quadratic
variation [Y ]. Then:

f(t, Y (t)) = f(0, Y (0))+

∫ t

0

ft(s, Y (s))ds+

∫ t

0

fx(s, Y (s))dY (s)+ 1
2

∫ t

0

fxx(s, Y (s))d[Y ]s
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We now generalize this theory to the d-dimension vector valued variant.

Theorem 63 (Theorem 6.5). Let 0 < T < ∞, f ∈ C1,2([0, T ], D) where D is
open in Rd. Furthermore Y is Rd-valued and a continuous semimartingale such
that Y ([0, T ]) ⊆ D almost surely. Then:

f(t, Y (t)) = f(0, Y (0)) +

∫ t

0

ft(s, Y (s))ds+

d∑
i=1

∫ t

0

fxi
(s, Y (s))dY (s)

+
1

2

∑
1≤i,j≤d

∫ t

0

fxixj
(s, Y (s))d[Yi, Yj ](s)

Short hand notation:

df(t, Y (t)) = ft(t, Y (t))dt+

d∑
i=1

fxi
(t, Y (t))dY (t)

+
1

2

∑
1≤i,j≤d

fxixj
(t, Y (t))d[Yi, Yj ](t)

We have the special case that Y (t) = B(t) = (B1(t), . . . , Bd(t)), the d−dimensional
Brownian Motion. Notation:

• f ∈ C1,2(([0, T ]× Rd)

• ∇xf = (fx1
, . . . , fxd

) the gradient vector

• ∆xf = ∇x · ∇xf =
∑d
i=1 fxi,xi

, the Laplacian

Theorem 64 (Corollary 6.7). Let B(t) be d-dimensional Brownian Motion,
f ∈ C1,2([0, T ]× Rd)
Then

f(t, B(t)) = f(0, B(0)) +

∫ t

0

(
ft(s,B(s) + 1

2∆xf(s,B(s))
)

ds

+

∫ t

0

∇xf(s,B(s))dB(s)
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10 Itô’s formula

The continuous semimartingale class is preserved after transformation of f(t, Y (t).
This may not be the case if we work with martingales.
For f ∈ C1(R) such that F (x) =

∫ x
0
f(y)dy we have that

∫ t
0
f(Bs)dBs =

F (Bt)− 1
2

∫ t
0
f ′(Bs)ds , which is the path-wise interpretation.

The short hand notation is df(Bt) = f ′(Bt)dBt + 1
2f
′′(Bt)dt. This notation

has no meaning, only through the integrated version.
Application of Itô formula: Beautiful and useful results can be derived from
special choices of f .

Preservation of Martingale property
Suppose that Y (t) is continuous martingale and f ∈ C1,2([0, T ]× R).

Ito: f(t, Y (t)) = f(0, Y (0))+
∫ t

0

(
ft + 1

2fxx
)

(s, Y (s))d[Y ]s+
∫ t

0
fx(s, Y (s))dY (s).

If 2nd term on the right hand side is zero, then it is at least a local martin-
gale. When is

∫ t
0
fx(s, Y (s))dY (s) a martingale? One sufficient condition is for

example, Y is continuous L2-martingale and fx(s, Y (s)) ∈ L2(M,P ).

Theorem 65 (Lemma 6.9). Suppose f ∈ C1,2(R+ × R) and ft + 1
2fxx = 0.

Let Bt be a one-dimensional standard Brownian Motion. Then f(t, Bt) is lo-

cal L2-martingale. If further
∫ T

0
E
[
f2
x(t, Bt)

]
dt < ∞ then f(t, Bt) is an L2-

martingale on [0, T ]

This lemma can be extended to the d-dimensional Brownian Motion.
When is a local martingale a martingale?

Exercise 3.7 X a nonnegative local martingale with E [X0] < ∞. X is a
martingale ⇐⇒ E [Xt] = E [X0] for all t > 0

Exercise 3.8 M is a right-continous local martingale and M∗t ∈ L1(P ) then
M is a martingale

Corollary A continuous local martingale which is bounded a.s. is a martingale.

Example 17. Some applications of Lemma 6.9:

• f(t, x) = x2 − t⇒ B2
t − t is a martingale.

• f(t, x) = eαx−
1
2α

2t then fx = αf, fxx = α2f and ft = − 1
2α

2f = − 1
2fxx

and therefore eαBt−
1
2α

2t is a martingale.

Example 18 (Exit time of Brownian Motion with drift.). We have Xt = µt+
σBt with µ ∈ R, σ ∈ R, σ 6= 0. τ = inf{t > 0 : xt = a or xt = b} where
a < 0, b > 0.
What is P (Xτ = b)?

Propositions 6.11 and 6.12 are about recurrent/transience properties of Brown-
ian Motion.

• One dimensional BM is (point) recurrent.

• Two dimensional BM is not point recurrent, but neighbourhood recurrent.

• d-dimensional BM (d ≥ 3) is transient.
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Theorem 66 (Theorem 6.14). Let M be a continuous Rd-valued local mar-
tingale and X(t) = M(t) −M(0) such that X(0) = 0. Then X is a standard
Brownian Motion relative to Ft iff [xi, Xj ](t) = δi,jt in particual X is indepen-
dent of F0

10.1 SDEs

Recall ordinary differential equations (ODE). For example it may be of the form
ẋ = f(t, x), equivalently dx(t) = f(t, x(t))dt.
SDE: The stochastic variant will involve in the simplest case a dBt term. For
example, dXt = µ(t,Xt)dt+ σ(t,Xt)dBt.
We have seen earlier this type of equations as short hand notation for Ito for-
mula. But there given Xt = f(t, Bt) we derived this short hand notation for-
mula.
Now we have to do the reverse. Given this ’formula’/SDE, does there exist a
process Xt which satisfy this equation? Recall that this short-hand notation
must be interpreted through integral form. That is still the case.

Definition 35. Let (Ω,F , P ) be a complete filtered probability space, and (Bt)
is a standard Brownian motion defined on it. Suppose µ, σ : [0, T ]×R→ R are
measurable and η is an F0-measurable random variable. A stochastic process
(Xt), t ∈ [0, T ] defined on (Ω,F , P ) is called a strong solution of the SDE:
dXt = µ(t,Xt)dt + σ(t,Xt)dBt with initial condition X0 = η if the following
assertions are true:

1. Xt is continuous and Ft-adapted

2.
∫ T

0
|µ(t,Xt)|dt+

∫ T
0
|σ(t,Xt)|2dt <∞ almost surely.

3. For each t ∈ [0, T ] : Xt = η+
∫ t

0
µ(s,Xs)ds+

∫ t
0
σ(s,Xs)dBS almost surely.

Note that condition 2. assures that the integrals in 3. are well defined.
So given an SDE questions are about existence of a solution, if it exists, then
uniqueness of it; and not unimportant, the properties of the solutions.
In an SDE: dXt = µ(t,Xt)dt + σ(t,Xt)dBt, µ is called drift/instantaneous
growth term and σ2 is called the diffusion coefficient/instantaneous variance.

Example 19 (7.3). Consider the SDE dXt = µXtdt+σXtdBt with X0 = x0 ∈
R.
Let’s see if Xt = f(t, Bt) can be a solution to such SDE.
Applying Itô formula to f(t, Bt) we have,

d[f(t, Bt)] =
[
ft(t, Bt) + 1

2fxx(t, Bt)
]

dt+ fx(t, Bt)dBt

so if there exists f such that

ft + 1
2fxx = µ · f and fx = σf

then Xt = ft(t, Bt) will be a solution.
fx = σf ⇒ f(t, x) = g(t)eσx where g is some function of t only. Plugging this

into the 1st expression yields: g′(t)
g(t) f + σ2

2 f = µf . So if there exists a g(t) such

that g′

g = 1
2σ

2 − µ then it will do.

27



But g′

g = µ − 1
2σ

2 ⇒ g = ce(µ− 1
2σ

2)t where c is the integration constant. So

f(t, x) = ce(µ− 1
2σ

2)t+σx. Now consider Xt = f(t, Bt) = ce(µ− 1
2σ

2)t+σBt . It is
not difficult (using Itô) that all conditions in the definition of a solution are
satisfied.
To make sure that initial condition is satisfied one needs c = x0. hence the

complete solution is Xt = x0e
(µ− 1

2σ
2)t+σBt .

If X0 was a random variable η (which must be F0-measurable and hence inde-

pendent of (Bt)t>0) then Xt = ηe(µ− 1
2σ

2)t+σBt

This is one solution, are there any other solutions? That would be answered
with no via a general result
Properties
E [Xt] = E [η] eµt which grows exponentially assuming that E [η] 6= 0, but Xt =

ηet((µ−
1
2σ

2)+σ
Bt
t . The strong law of large numbers says that Bt

t → 0 a.s. thus
if (µ− 1

2σ
2) < 0 then Xt → 0 a.s. as t→∞.

Here is another example of a sequence of random variables which converges to
0 a.s. but is expectations converge to ∞.

Example 20 (7.2 (Ornstein Uhlenbeck process).

dXt = −αXtdt+ σdBt X0 = x0

Show that a solution of the form Xt = f(t, Bt) does not exist.
So we need to use a different technique. Multiply both sides by the integrating
factor Zt = eαt. Then apply Itô formula to (ZX)t to obtain the solution:

Xt = x0e
−αt +

∫ t

0

σe−α(t−s)dBs
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11 Applications of Itô’s formula

Brownian Bridge(Example 7.4) For fixed 0 < t < 1:

dXt = − Xt

1− t
dt+ dBt with X0 = x0

has the solution Xt = x0 + e−αt + σ(1 − t)
∫ t

0
1

1−sdBs. Xt is defined on [0, 1)
and Xt → 0 as t ↑ 1. Xt is a Brownian motion conditioned at the end (t = 1)
to be also zero.
Xt = Bt − tB1 is also a Brownian bridge

Theorem 67 (Theorem 7.8). Consider the SDE on the given space (Ω,F , P ):

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ∈ [0, T ];X0 = ξ ∈ F0

Suppose the coefficients b and σ satisfy the Lipschitz condition:

|b(t, x)− b(t, y)|2 + |σ(t, x)− σ(t, y)|2 ≤ L|x− y|2

for some constant L > 0 and the spatial Growth condition

|b(t, x)|2 + |σ(t, x)|2 ≤ L(1 + |x|2)

Then there exists a continuous, adapted process X which is a solution of the
SDE. Furthermore, the process X is unique up to indistinguishability, i.e. if
Xt and Yt are both solutions of the SDE then P (Xt = Yt for allt ∈ [0, T ]) = 1

Some useful results are listed below:

Theorem 68 (Gronwall’s Lemma (Lemma A.20)). Let g be an integrable Borel
function on [a, b] and f a non-decreasing function on [a, b]. Suppose there is a
constant c such that

g(t) ≤ f(t) + c

∫ t

a

g(s)ds ∀t ∈ [a, b]

Then g(t) ≤ f(t)ec(t−a)

Theorem 69 (Doob’s maximum inequality). For square integrable continuous
martingale M , and 0 < T <∞

E
[

sup
0≤t≤T

|Mt|2
]
≤ 4E

[
|MT |2

]
Theorem 70 (Theorem 7.12). Suppose ξ, η are F0-measurable random vari-
ables. Assume b and σ satisfy the Lipschitz condition. Suppose X and Y are
solutions to the same SDE with coefficients b and σ but with possibly different
initial values ξ and η, respectively. Then X and Y are indistinguishable, on the
event {ξ = η}, i.e., P ((Xt − Yt)1{ξ=η} = 0,∀t ∈ [0, T ]) = 1

Now a very long proof of this theorem followed, which I think is not relevant.
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Theorem 71 (Theorem 7.14). Suppose b and σ are continuous functions of
(t, x) satisfying the growth and Lipschitz conditions.
Let X be the strong solution of the SDE with coefficients b and σ (and with
F0-measurable ξ as initial value) on the filtered probability space (Ω,F , P ) with
B a Brownian motion on it.
Let X̃ be the strong solution corresponding to the SDE with same coefficients b
and σ but corresponding to (Ω̃, F̃ , P̃ ), B̃, ξ̃.
Suppose ξ = ξ̃ in distribution.
Then the processes X and X̃ have the same probability distribution. I.e., for
any measurable set A of CRd [0, T ], P (X ∈ A) = P̃ (X̃ ∈ A)

In the absence of the growth and Lipschitz conditions one may not always be
able to find a (strong) solution defined on the given probability space (Ω,F , P )
It is however, sometimes possible to define/construct

1. Another (filtered) probability space (Ω∗,F∗, P ∗)

2. An SBM B∗t on the new filtered space

3. An F0-measurable ξ∗ with probability distribution same as that of ξ

4. A continuous adapted process X∗t w.r.t. the new filtered space such that

∫ T

0

|b(t,X∗t )|dt+

∫ T

0

|σ(t,X∗t )|2dt <∞

and

X∗t = ξ∗ +

∫ t

0

b(s,X∗s )d +

∫ t

0

σ(s,X∗s )dB∗s

Then (Ω∗,F∗, P ∗, ξ∗, (B∗t ), (X∗t )) is called the weak solution of the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt
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12 Girsanov’s theorem

The main question of this section is: ”Can a stochastic process with drift be
viewed as one without drift? Or be transformed into one?”

Xt =

∫ t

0

σsdBs Yt =

∫ t

0

µsds+

∫ t

0

σsdBs

Because Xt is a martingale, it is easier to analyze then Yt!

Monte Carlo Integration

The Riemann sum is given by
∫ 1

0
f(x)dx ≈ 1

n

∑n
i=1 f(xi) for xi = i−1

n .
Monte Carlo integration is the same concept but now random variables are used

to approximate the integral:
∫ 1

0
f(x)dx ≈ 1

n

∑n
i=1 f(Xi) for Xi ∼ Unif[0, 1].

Now the Strong Law of Large Numbers yields that if Xi’s are i.i.d. with finite
expectation µ, then 1

n

∑n
i=1Xi

n→∞−−−−→ E [X] almost surely. Therefore we can
approximate E [f(x)] by drawing large samples X1, . . . , Xn from the distribution
of X and considering the sum 1

n

∑n
i=1 f(Xi)∫

f(x)p(x)dx = E [f(x)] ≈ 1

n

n∑
i=1

f(Xi), Xi ∼ p(x)

In theory this is a very nice idea, but in practice it doesn’t work for most cases.
Let’s see for example the case that we are interested in P (X > 30) for X ∼
N(0, 1). Then we can approximate this probability by P (X > 30) = E [f(x)]
for f(x) = 1(30,∞) so that we have:

P (X > 30) = E [f(X)] ≈ 1

n

n∑
i=1

1(30,∞), Xi ∼ N(0, 1)

If we define D to be the number of draws before the first hit (xi > 30), then
E [D] > 10100. So in practice this approximation is quite useless.

Importance Sampling
For this problem importance sampling has been invented. By importance sam-
pling we convert the problem so we can sample from more easy distributions:

∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx =

∫
g(x)q(x)dx

EP [f(X)] = EQ [g(X)] = EQ
[
f(X)

p(X)

q(X)

]
In order to apply importance sampling fruitfully we need the ability to draw

sample from density q(x), the ability to calculate p(x)
q(x) and q(x) > 0 whenever

p(x) > 0 (or equivalently q(x) = 0⇐⇒ p(x) = 0)
If we get back to our previous example, for p ∼ N(0, 1); q ∼ N(µ, 1) such that

p(x)/q(x) = e−µx+
1
2µ

2

and P (X > 30) ≈ 1
n

∑n
i=1

[
1{Xi>30}e

−µXi+
1
2µ

2

]
, where

Xi ∼ N(µ, 1). So choosing a suitable value for µ improves the approximation.
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Change of Measure
So if we have the same random variable, but we want a different probability
distribution? In that we case we define them on different probability measures.
Consider Ω = R equipped with the Borel σ-algebra B and a random variable
X : Ω→ R given by X(ω) = ω.
Consider probability measures on (Ω,B), given by:

• P1((a, b]) = (b ∧ 1) ∨ 0− (a ∧ 1) ∨ 0

• P2((a, b]) = Φ(b)− Φ(a)

Under P1, X ∼ U(0, 1) and under P2, X ∼ N(0, 1)

Now consider a probability space (Ω,F , P ) and a random variable X defined

on it such that X ∼ N(0, 1) under P . For some µ ∈ R, let Z = eµX−
1
2µ

2

, then
Z > 0 and E [Z] = 1. Define a new measure Q on (Ω,F by Q(A) = E [1AZ] for
A ∈ F . Now Q is a probability measure and under Q, X ∼ N(µ, 1).

Theorem 72 (Girsanov Theorem). Suppose (Bt) is a d-dimensional Brownian
Motion defined on the complete filtered probability space (Ω,F , P ), 0 < T <∞ is

fixed and H is an adapted measurable Rd-valued process such that
∫ T

0
|H(t)|2dt <

∞ almost surely under P .

Let Zt = Zt(H) = exp
{∫ t

0
H(s)dB(s)− 1

2

∫ t
0
|H(s)|2ds

}
.

• Assume that {Zt, t ∈ [0, T ]} is martingale. (Equivalent assumption: E [ZT ] =
EP [Zt] = 1.)

• Define the probability measure Q = QT on FT as dQ = ZT dP

• Define the process W (t) = B(t)−B(0)−
∫ t

0
H(s)ds

Then {W (t), t ∈ [0, T ]} is a d-dimensional Brownian Motion on the probability
space (Ω,FT , Q) w.r.t. the filtration {Ft}t∈[0,T ]

Remark 1: Mt =
∫ t

0
H(s)dBs is a continuous local martingale. Then Itô formula

says that Zt = 1 +
∫ t

0
ZsdMs = 1 +

∫ t
0
ZsHsdBs such that Zt is a continuous

local martingale.
Remark 2: ZT ≥ 0⇒ Q is a positive measure and Zt is martingale⇒ EP [ZT ] =
EP [Z0] = 1 hence Q is a probability measure.

A Useful Observation
For t ∈ R+, define Qt on (Ω,Ft) as dQt = ZtdP . Suppose that Zt is a martin-
gale. Then the family of measure {Qt} satisfy certain consistency properties:
Let s < t and A ∈ Fs ⊂ Ft

Qt(A) = EP [1AZt] = EP
[
EP [1AZt|Fs]

]
= EP

[
1AEP [Zt|Fs]

]
= EP [1AZs]

= Qs(A)

Example 21 (Application 1). Let Bt be a standard Brownian Motion; α <
0, µ ∈ R and σ : first time Bt hits the (space-time) line a − µt. What is the
probability distribution of σ?
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• Define Xt = Bt+µt. Then σ = inf{t ≥ 0 : Bt = a−µt} = inf{t ≥ 0;Xt =
a}

• Use Girsanov’s theorem with H(s) = −µ such that Zt = e−µBt−µ2t/2 and
note that Zt is indeed a martingale. Now Qt(A) = EP [1AZt]. such that
{Xs, 0 ≤ s ≤ t} is a standard Brownian Motion under Qt.

• Since Zt > 0, it holds that P (A) = EQ
[
1AZ

−1
t

]
, for A ∈ F [dQt =

ZtdP ⇔ dP = Z−1
t dQt]

Z−1
t = eµBt+µ

2t/2 = eµXt−µ2t/2

•

P (σ > t) = P

(
inf

0≤s≤t
Xs > a

)
= EQ

[
1{inf0≤s≤tXs>a}Z

−1
t

]
= EQ

[
1{inf0≤s≤tXs>a}e

µXt−µ2t/2
]

= e−µ
2t/2EQ

[
1{sup0≤s≤t(−Xs)<−a}e

−µ(−Xt)
]

= e−µ
2t/2EP

[
1{sup0≤s≤tMt<−a}e

−µBt

]
where Mt = sup

0≤s≤t
Bt

• The joint distribution of (Bt,Mt) is known.

Theorem 73 (Theorem 8.13). Suppose H is adapted, measurable with
∫ T

0
|H(t)|2dt <

∞ almost surely under P . The process Zt−exp
{∫ t

0
H(s)dB(s)− 1

2

∫ t
0
|H(s)|2ds

}
(which is a positive local martingale, and hence a supermartingale) is martingale
under any of the following conditions:

• H(t) is non-random

• ((H(t)) and (Bt) are mutually independent processes.

• {H(t), t ∈ [0, T ]} is bounded

•
∫ T

0
|H(s)|2ds ≤ C <∞ almost surely

• Novikov conditon: E
[
e

1
2

∫ T
0
|H(s)|2ds

]
<∞

Theorem 74 (Theorem 8.17). Let 0 < T < ∞, b : [0, T ] × Rd → Rd Borel
measurable and Bt a d-dimensional standard Brownian Motion. Consider the
SDE:

dXt = b(t,Xt)dt+ dBt with X0 ∼ ν

If b is bounded, then the SDE has a weak solution for any initial distribution ν
on Rd
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