

Exam Stochastic Differential Equations (Mastermath SDE) 08-06-2015; 13:30 – 16:30.

No calculator/phone allowed

- (5) 1. a. Let $X \in L^1$ be a random variable and let \mathcal{F} and \mathcal{G} be σ -algebras such that $\mathcal{F} \subseteq \mathcal{G}$. Show that $\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{F}) = \mathbb{E}(X|\mathcal{F})$.
- (5) b. Let $\{X_n : n \in \mathbb{N}\}$ be a sequence of random variables. Assume there is a constant C such that for all integers $n \in \mathbb{N}$, $\mathbb{E}(|X_n|^2) \leq C$. Show that X is uniformly integrable.
- (5) c. Let $(X_t)_{t\geq 0}$ be a nonnegative local martingale such that $\mathbb{E}(X_0) < \infty$. Show that X is a supermartingale.
- (2) d. Let 0 < a < b and assume $\xi : \Omega \to \mathbb{R}$ is \mathcal{F}_a -measurable. Use the definition to show that $\mathbf{1}_{(a,b]}\xi$ is predictable.
- (4) e. Use the previous exercise and an approximation argument to show that any left-continuous adapted process $Z : \mathbb{R} \times \Omega \to \mathbb{R}$ is predictable.
 - 2. Let B be a standard Brownian motion and let $\mathcal{F}_t = \sigma(B_s : s \leq t)$.
- (6) a. Let $\alpha \ge 0$. Using the properties of conditional expectations and the independent increments of Brownian motion show that $X_t = \cosh(\alpha |B_t|) \exp(-\alpha^2 t/2)$ is a martingale.

Hint: Recall that $\cosh(|x|) = \cosh(x) = (e^x + e^{-x})/2$. You may also use the identity: $\mathbb{E}(\exp(\xi)) = \exp(\sigma^2/2)$ for $\xi \sim N(0, \sigma^2)$.

Fix A > 0 and let $\tau = \inf\{t \ge 0 : |B_t| = A\}.$

- (3) b. Prove that τ is a stopping time.
- (3) c. Show that $\mathbb{E}(X_{t\wedge\tau}) = 1$ for all $t \ge 0$.
- (5) d. Show that $\mathbb{E}(X_{\tau}) = 1$ and use this to find a formula for $\mathbb{E}(e^{-\lambda \tau})$ where $\lambda \ge 0$. *Hint:* You may use the known fact that $\tau < \infty$ almost surely.

See next page.

3. Let M be a continuous L^2 -martingale. We will show below, in steps (a) through (c), that $M^2 - [M]$ is a martingale. Let $t > s \ge 0$. Consider a partition of [0, t] given by

 $0 = t_0 < t_1 < \dots < t_k = s < \dots < t_n = t.$

(4) a. Show that for $t_i \ge s$,

$$\mathbb{E}\left[\left.M_{t_{i+1}}^2 - M_{t_i}^2 - (M_{t_{i+1}} - M_{t_i})^2\right| \mathcal{F}_s\right] = 0.$$

(2) b. Derive that

$$\mathbb{E}\left[\left.M_t^2 - \sum_{i=0}^{n-1} (M_{t_{i+1}} - M_{t_i})^2 \right| \mathcal{F}_s\right] = M_s^2 - \sum_{i=0}^{k-1} (M_{t_{i+1}} - M_{t_i})^2.$$

- (3) c. Using the previous identity and the existence theorem for quadratic variations of continuous L^2 -martingales show that $M^2 [M]$ is a martingale.
- (6) d. Let M and N be continuous L^2 -martingales with quadratic covariation $[M, N]_t = 2t 1$. Let $X : \mathbb{R}_+ \times \Omega \to \mathbb{R}$ be given by $X_t = M_t + \cos(t)$. Let $U : \mathbb{R}_+ \to \mathbb{R}$ and $V : \mathbb{R}_+ \to \mathbb{R}$ be given by $U_t = t$ and $V_t = t^2$. Use the properties of quadratic (co)variations to calculate the $[U \cdot X, V \cdot N]_t$ for $t \ge 0$.
 - 4. Let (B_t) be a standard Brownian motion defined on a (filtered) probability space $(\Omega, \mathcal{F}(\mathcal{F}_t), P)$. Suppose X_t is a process satisfying the SDE

$$dX_t = X_t dB_t, \quad X_0 = 1. \tag{*}$$

Define the process $(Z_t)_{t \in [0,1]}$ by

$$Z_t = X_t e^{-\int_0^t B_s^2 ds}$$

(6) a. Apply Itô's formula to show that

$$dZ_t = Z_t (dB_t - B_t^2 dt), \quad Z_0 = 1.$$
 (**)

(5) b. Find the solution X_t satisfying the SDE (*).

Hint: You may propose a solution and appeal to the uniqueness theorem.

- (3) c. Use the solution in (b) to show that $\mathbb{E}(Z_t^2) \leq e^t$. *Hint:* You may use the identity $\mathbb{E}(\exp(\xi)) = \exp(\sigma^2/2)$ for $\xi \sim N(0, \sigma^2)$.
- (6) d. In the "integrated version" of the SDE (**) two relevant random variables are $\int_0^1 Z_t dB_t$ and $\int_0^1 Z_t B_t^2 dt$. Use (c) to show that both of the following hold.

(i)
$$\mathbb{E}\left[\left(\int_0^1 Z_t dB_t\right)^2\right] < \infty$$
 and (ii) $\mathbb{E}\left[\int_0^1 |Z_t B_t^2| dt\right] < \infty$.

Hint: If needed, you may assume the expressions for the moments of Gaussian distribution, without proof. For example, $\mathbb{E}(\xi^4) = 3\sigma^4$ for $\xi \sim N(0, \sigma^2)$.

5. Let $0 < T < \infty$. Suppose H is a predictable process satisfying

$$\int_0^T H_t^2 \, dt < \infty, \quad \text{a.s.} \qquad (\dagger)$$

and let $Z_t \equiv Z_t(H)$ be given by

$$Z_t(H) = \exp\left\{\int_0^t H_s \, dB_s - \frac{1}{2} \int_0^t H_s^2 \, ds\right\}$$

(5) a. Use Itô's formula to Z to show that, under (\dagger) , Z is a continuous local martingale.

In the Girsanov Theorem an important assumption is that $(Z_t)_{t \in [0,T]}$ is a martingale. Since Z is nonnegative using Question (1c) one sees that Z is a supermartingale. It can be shown that $(Z_t)_{t \in [0,T]}$ is a martingale if and only if $\mathbb{E}[Z_T] = 1$. In this exercise we will check the latter in several steps under the assumption that there is a constant C such that

$$\int_0^T H_t^2 dt \leq C, \quad \text{a.s.} \qquad (\dagger\dagger)$$

Let $\sigma_n = \inf\{0 \le t \le T : Z_t \ge n\}$, where we set $\sigma_n = T$ if the set is empty. In this way $(\sigma_n)_{n\ge 1}$ is a localizing sequence for Z. Denote by $Z_t^{(n)}$ the stopped process $Z_{t\wedge\sigma_n}$. It then follows immediately that

$$\mathbb{E}(Z_t^{(n)}) = 1, \quad n \ge 1, \ 0 \le t \le T.$$

(3) b. Show from the definitions that $Z_t^{(n)} = Z_t(H^{(n)})$ a.s., where $H^{(n)}$ is given by

$$H_s^{(n)}(\omega) = H_s(\omega) \mathbf{1}_{[0,\sigma_n(\omega)]}(s), \quad \text{for } 0 \le s \le T.$$

(5) c. Show that if
$$(\dagger\dagger)$$
 holds then $\mathbb{E}\left(\left(Z_T^{(n)}\right)^2\right) \le e^C$, for all $n \ge 1$.

Hint: Argue that $(Z_t^{(n)})^2 \leq M_t^{(n)} e^C$ for some suitable martingale $M_t^{(n)}$ with $M_0^{(n)} = 1$.

(4) d. Show that, under $(\dagger\dagger)$, $\mathbb{E}[Z_T] = 1$.

Hint: Argue that $\sigma_n \to T$ a.s. and $Z_T^{(n)} \to Z_T$ a.s. Use Question 1 to conclude that $\{Z_T^{(n)}, n \ge 1\}$ is uniformly integrable. Recall further that for $X, X_n \in L^1 \ (n \ge 1), X_n \to X$ in L^1 if and only if (i) $X_n \to X$ in probability and (ii) $\{X_n, n \ge 1\}$ is uniformly integrable.

Number of points can be found next to the questions; the grade will be calculated according to

$$Grade = \frac{Number of points}{10} + 1$$