Solution to Exam Stochastic Differential Equations (Mastermath) 08-06-2015; 13:30-16:30.

1. a. Let $X \in L^{1}$ be a random variable and let \mathcal{F} and \mathcal{G} be σ-algebras such that $\mathcal{F} \subseteq \mathcal{G}$. Show that $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{F})=\mathbb{E}(X \mid \mathcal{F})$.
b. Let $\left\{X_{n}: n \in \mathbb{N}\right\}$ be a sequence of random variables. Assume there is a constant C such that for all integers $n \in \mathbb{N}, \mathbb{E}\left(\left|X_{n}\right|^{2}\right) \leq C$. Show that X is uniformly integrable.
c. Let $\left(X_{t}\right)_{t \geq 0}$ be a nonnegative local martingale such that $\mathbb{E}\left(X_{0}\right)<\infty$. Show that X is a supermartingale.
d. Let $0<a<b$ and assume $\xi: \Omega \rightarrow \mathbb{R}$ is \mathcal{F}_{a}-measurable. Use the definition to show that $\mathbf{1}_{(a, b]} \xi$ is predictable.
e. Use the previous exercise and an approximation argument to show that any left-continuous adapted process $Z: \mathbb{R} \times \Omega \rightarrow \mathbb{R}$ is predictable.

[Soln]

a. Let $Z=\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{F})$. For every $F \in \mathcal{F}$ we also have that $F \in \mathcal{G}$ and thus by the definition of the conditional expectation we find that

$$
\int_{F} Z d \mathbb{P}=\int_{F} \mathbb{E}(X \mid \mathcal{G}) d \mathbb{P}=\int_{F} X d \mathbb{P}
$$

Since Z is \mathcal{F}-measurable the required identity follows.
b. For each $r>0$ we have

$$
\int_{\left\{\left|X_{n}\right|>r\right\}}\left|X_{n}\right| d \mathbb{P} \leq r^{-1} \int_{\left\{\left|X_{n}\right|>r\right\}}\left|X_{n}\right|^{2} d \mathbb{P} \leq r^{-1} \int_{\Omega}\left|X_{n}\right|^{2} d \mathbb{P} \leq r^{-1} C .
$$

Therefore,

$$
\lim _{r \rightarrow \infty} \sup _{n \geq 1} \int_{\left\{\left|X_{n}\right|>r\right\}}\left|X_{n}\right| \mathbb{P} \leq \lim _{r \rightarrow \infty} r^{-1} C=0 .
$$

c. See one of the exercises of chapter 3.
d. The definition of the predictability can be found in the lecture notes. There are at least two possible solutions:

1. Approximate ξ by \mathcal{F}_{a}-measurable simple functions ξ_{n}, then $\mathbf{1}_{(a, b]} \xi_{n}$ can be written as a linear combination of predictable rectangles and hence is predictable. Then also the pointwise limit $\mathbf{1}_{(a, b]} \xi$ is predictable.
2. Check that $\mathbf{1}_{(a, b]} \xi \in B$ is in the predictable σ-algebra. If $0 \notin B$ this is simple. If $0 \in B$, then some more rewriting is required.
e. Use d and approximation. See the lecture notes for details.
3. Let B be a standard Brownian motion and let $\mathcal{F}_{t}=\sigma\left(B_{s}: s \leq t\right)$.
(6) a. Let $\alpha \geq 0$. Using the properties of conditional expectations and the independent increments of Brownian motion show that $X_{t}=\cosh \left(\alpha\left|B_{t}\right|\right) \exp \left(-\alpha^{2} t / 2\right)$ is a martingale.

Hint: Recall that $\cosh (|x|)=\cosh (x)=\left(e^{x}+e^{-x}\right) / 2$. You may also use the identity: $\mathbb{E}(\exp (\xi))=\exp \left(\sigma^{2} / 2\right)$ for $\xi \sim N\left(0, \sigma^{2}\right)$.

Fix $A>0$ and let $\tau=\inf \left\{t \geq 0:\left|B_{t}\right|=A\right\}$.
(3) b. Prove that τ is a stopping time.
(3) c. Show that $\mathbb{E}\left(X_{t \wedge \tau}\right)=1$ for all $t \geq 0$.
(5) d. Show that $\mathbb{E}\left(X_{\tau}\right)=1$ and use this to find a formula for $\mathbb{E}\left(e^{-\lambda \tau}\right)$ where $\lambda \geq 0$.

Hint: You may use the known fact that $\tau<\infty$ almost surely.

[Soln]

a. Note that for $s<t$ by linearity of the conditional expectation

$$
\mathbb{E}\left(X_{t} \mid \mathcal{F}_{s}\right)=\frac{1}{2} \exp \left(-\alpha^{2} t / 2\right)\left(\mathbb{E}\left(\exp \left(\alpha B_{t}\right) \mid \mathcal{F}_{s}\right)+\mathbb{E}\left(\exp \left(-\alpha B_{t}\right) \mid \mathcal{F}_{s}\right)\right)
$$

We calculate both conditional expectations.

$$
\begin{aligned}
\mathbb{E}\left(\exp \left(\alpha B_{t}\right) \mid \mathcal{F}_{s}\right) & =\mathbb{E}\left(\exp \left(\alpha\left(B_{t}-B_{s}\right)\right) \exp \left(\alpha B_{s}\right) \mid \mathcal{F}_{s}\right) \\
& =\exp \left(\alpha B_{s}\right) \mathbb{E}\left(\exp \left(\alpha\left(B_{t}-B_{s}\right)\right) \mid \mathcal{F}_{s}\right) \quad \text { (taking out what is known) } \\
& =\exp \left(\alpha B_{s}\right) \mathbb{E}\left(\exp \left(\alpha\left(B_{t}-B_{s}\right)\right)\right) \quad \text { (independence) } \\
& =\exp \left(\alpha B_{s}\right) \exp \left(\alpha^{2}(t-s) / 2\right) \quad\left(\alpha\left(B_{t}-B_{s}\right) \sim N\left(0, \alpha^{2}(t-s)\right)\right)
\end{aligned}
$$

The other conditional conditional expectation can be calculated in the same way and is

$$
\mathbb{E}\left(\exp \left(\alpha B_{t}\right) \mid \mathcal{F}_{s}\right)=\exp \left(-\alpha B_{s}\right) \exp \left(\alpha^{2}(t-s) / 2\right) .
$$

Putting everything together we find

$$
\mathbb{E}\left(X_{t} \mid \mathcal{F}_{s}\right)=\exp \left(-\alpha^{2} t / 2\right) \cosh \left(\alpha B_{s}\right) \exp \left(\alpha^{2}(t-s) / 2\right)=X_{s} .
$$

b. For every $t \geq 0$ we can write

$$
\{\tau>t\}=\left\{\forall s \in[0, t] B_{s}<A\right\}=\left\{\forall s \in[0, t] \cap \mathbb{Q} B_{s}<A\right\}=\bigcap_{s \in[0, t] \cap \mathbb{Q}}\left\{B_{s}<A\right\} \in \mathcal{F}_{t} .
$$

where in the last step we used the adaptedness of B and the fact that the countable union of sets in \mathcal{F}_{t} is in \mathcal{F}_{t} again.
You may also use a theorem from the lecture notes. Here it is important to observe the continuity of B and the closedness of the set $\{A,-A\}$.
c. Since τ is a stopping time and $\left(X_{t}\right)_{t \geq 0}$ a martingale, it follows from the stopping time theorem that $\left(X_{t \wedge \tau}\right)_{t \geq 0}$ is a martingale again. Therefore, by the properties of the conditional expectation:

$$
\mathbb{E}\left(X_{t \wedge \tau}\right)=\mathbb{E}\left(\mathbb{E}\left(X_{t \wedge \tau} \mid \text { mathcalF } F_{0}\right)\right)=\mathbb{E}\left(X_{0}\right)=0 .
$$

d. First note that $\left.\lim _{t \rightarrow \infty} X_{t \wedge \tau}\right)=X_{\tau}$ pointwise on the set $\{\tau<\infty\}$. Observe that $\left|B_{t \wedge \tau}\right| \leq$ A. Therefore,

$$
\left|X_{t \wedge \tau}\right| \leq \cosh (\alpha A) \exp \left(-\alpha^{2}(t \wedge \tau) / 2\right) \leq \cosh (\alpha A)
$$

Since the constant function $\cosh (\alpha A)$ is in L^{1}, we may apply the dominated convergence theorem to conclude

$$
1=\lim _{t \rightarrow \infty} \mathbb{E}\left(X_{t \wedge \tau}\right)=\mathbb{E}\left(\lim _{t \rightarrow \infty} X_{t \wedge \tau}\right)=\mathbb{E}\left(X_{\tau}\right)
$$

Next we calculate $\mathbb{E}\left(X_{\tau}\right)$ in a different way. Observe that on the set $\{\tau<\infty\}$ we have $\left|B_{\tau}\right|=A$ and hence

$$
1=\mathbb{E}\left(X_{\tau}\right)=\mathbb{E}\left(\cosh (\alpha A) \exp \left(-\alpha^{2} \tau / 2\right)\right)=\cosh (\alpha A) \mathbb{E}\left(\exp \left(-\alpha^{2} \tau / 2\right)\right) .
$$

Taking $\alpha^{2} / 2=\lambda$ we find that $\mathbb{E}\left(\exp \left(-\alpha^{2} \tau / 2\right)\right)=1 / \cosh (\sqrt{2 \lambda})$.
3. Let M be a continuous L^{2}-martingale. We will show below, in steps (a) through (c), that $M^{2}-[M]$ is a martingale. Let $t>s \geq 0$. Consider a partition of $[0, t]$ given by

$$
0=t_{0}<t_{1}<\cdots<t_{k}=s<\cdots<t_{n}=t
$$

(4) a. Show that for $t_{i} \geq s$,

$$
\mathbb{E}\left[M_{t_{i+1}}^{2}-M_{t_{i}}^{2}-\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2} \mid \mathcal{F}_{s}\right]=0
$$

(2) b. Derive that

$$
\mathbb{E}\left[M_{t}^{2}-\sum_{i=0}^{n-1}\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2} \mid \mathcal{F}_{s}\right]=M_{s}^{2}-\sum_{i=0}^{k-1}\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2}
$$

(3) c. Using the previous identity and the existence theorem for quadratic variations of continuous L^{2}-martingales show that $M^{2}-[M]$ is a martingale.
(6) d. Let M and N be continuous L^{2}-martingales with quadratic covariation $[M, N]_{t}=2 t-1$. Let $X: \mathbb{R}_{+} \times \Omega \rightarrow \mathbb{R}$ be given by $X_{t}=M_{t}+\cos (t)$. Let $U: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and $V: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be given by $U_{t}=t$ and $V_{t}=t^{2}$. Use the properties of quadratic (co)variations to calculate the $[U \cdot X, V \cdot N]_{t}$ for $t \geq 0$.

[Soln]

a. The tower property for $s \leq t_{i}$ gives that $\mathbb{E}\left(\cdot \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(\mathbb{E}\left(\cdot \mid \mathcal{F}_{t_{i}}\right) \mid \mathcal{F}_{s}\right)$. Thus by the definition of a martingale we can write

$$
\begin{aligned}
\mathbb{E}\left(M_{t_{i+1}}^{2}-M_{t_{i}}^{2}-\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2} \mid \mathcal{F}_{s}\right) & =\mathbb{E}\left(2 M_{t_{i}}\left(M_{t_{i+1}}-M_{t_{i}}\right) \mid \mathcal{F}_{s}\right) \\
& =\mathbb{E}\left(\mathbb{E}\left(2 M_{t_{i}}\left(M_{t_{i+1}}-M_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right) \mid \mathcal{F}_{s}\right) \\
& =\mathbb{E}\left(2 M_{t_{i}}\left(\left(M_{t_{i+1}}-M_{t_{i}}\right) \mid \mathcal{F}_{t_{i}}\right) \mid \mathcal{F}_{s}\right) \\
& =\mathbb{E}\left(2 M_{t_{i}} 0 \mid \mathcal{F}_{s}\right)=0 .
\end{aligned}
$$

b. Note that $M_{t}^{2}=M_{s}^{2}+\sum_{i=k}^{n-1}\left(M_{t_{i+1}}^{2}-M_{t_{i}}^{2}\right)$. Therefore, we find

$$
\begin{aligned}
\mathbb{E}\left[M_{t}^{2}-\sum_{i=0}^{n-1}\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2} \mid \mathcal{F}_{s}\right] & -\left(M_{s}^{2}-\sum_{i=0}^{k-1}\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2}\right) \\
& =\mathbb{E}\left[M_{t}^{2}-M_{s}^{2}-\sum_{i=k}^{n-1}\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2} \mid \mathcal{F}_{s}\right] \\
& =\sum_{i=k}^{n-1} \mathbb{E}\left[M_{t_{i+1}}^{2}-M_{t_{i}}^{2}-\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2} \mid \mathcal{F}_{s}\right]=0
\end{aligned}
$$

where in the last step we used part a.
c. The existence theorem for quadratic variations yields that for a sequence of partitions $\left(\pi^{m}\right)_{m \geq 1}$ of $[0, t]$ with $\operatorname{mesh}\left(\pi^{m}\right) \rightarrow 0$ we have with $\pi^{m}=\left\{t_{0}^{m}, \ldots, t_{n_{m}}^{m}\right\}$ with $t_{0}^{m}=0$ and $t_{n_{m}}^{m}=t$ that

$$
\sum_{i=0}^{n_{m}-1}\left(M_{t_{i+1}^{m}}-M_{t_{i}^{m}}\right)^{2} \rightarrow[M]_{t} \text { in } L^{1}
$$

Without loss of generality we can assume $s \in \pi^{m}$ for all m. By the contractivity of the conditional expectation (which means $\left.\left\|\mathbb{E}\left(X \mid \mathcal{F}_{s}\right)\right\|_{L^{1}} \leq\|X\|_{L^{1}}\right)$ we also find that

$$
\mathbb{E}\left[M_{t}^{2}-\sum_{i=0}^{n-1}\left(M_{t_{i+1}}-M_{t_{i}}\right)^{2} \mid \mathcal{F}_{s}\right] \rightarrow M_{t}^{2}-[M]_{t} \text { in } L^{1}
$$

Similarly, letting k_{m} be such that $t_{k_{m}}=s$, we find

$$
M_{s}^{2}-\sum_{i=0}^{k_{m}-1}\left(M_{t_{i+1}^{m}}-M_{t_{i}^{m}}\right)^{2} \rightarrow M_{s}^{2}-[M]_{s} \text { in } L^{1} .
$$

d. First note that $[U \cdot X, V \dot{N}]=U V \cdot[X, N]$. Also $[\cos (\cdot), N]=0$ because $\cos (\cdot)$ is of bounded variation. Thus $[X, N]=[M, N]+[\cos (\cdot), N]=[M, N]$ and we find

$$
[U \cdot X, V \dot{N}]_{t}=(U V \cdot[M, N])_{t}=\int_{0}^{t} s^{3}(2 s-1) d s=\int_{0}^{t} 2 s^{4}-s^{3} d s=\frac{2 t^{5}}{5}-\frac{t^{4}}{4}
$$

4. Let $\left(B_{t}\right)$ be a standard Brownian motion defined on a (filtered) probability space $\left(\Omega, \mathcal{F}\left(\mathcal{F}_{t}\right), P\right)$. Suppose X_{t} is a process satisfying the SDE

$$
\begin{equation*}
d X_{t}=X_{t} d B_{t}, \quad X_{0}=1 \tag{*}
\end{equation*}
$$

Define the process $\left(Z_{t}\right)_{t \in[0,1]}$ by

$$
Z_{t}=X_{t} e^{-\int_{0}^{t} B_{s}^{2} d s} .
$$

(6) a. Apply Itô's formula to show that

$$
d Z_{t}=Z_{t}\left(d B_{t}-B_{t}^{2} d t\right), \quad Z_{0}=1 . \quad(* *)
$$

(5) b. Find the solution X_{t} satisfying the $\operatorname{SDE}(*)$.

Hint: You may propose a solution and appeal to the uniqueness theorem.
(3) c. Use the solution in (b) to show that $\mathbb{E}\left(Z_{t}^{2}\right) \leq e^{t}$.

Hint: You may use the identity $\mathbb{E}(\exp (\xi))=\exp \left(\sigma^{2} / 2\right)$ for $\xi \sim N\left(0, \sigma^{2}\right)$.
(6) d. In the "integrated version" of the $\operatorname{SDE}(* *)$ two relevant random variables are $\int_{0}^{1} Z_{t} d B_{t}$ and $\int_{0}^{1} Z_{t} B_{t}^{2} d t$. Use (c) to show that both of the following hold.

$$
\text { (i) } \mathbb{E}\left[\left(\int_{0}^{1} Z_{t} d B_{t}\right)^{2}\right]<\infty \quad \text { and } \quad \text { (ii) } \mathbb{E}\left[\int_{0}^{1}\left|Z_{t} B_{t}^{2}\right| d t\right]<\infty \text {. }
$$

Hint: If needed, you may assume the expressions for the moments of Gaussian distribution, without proof. For example, $\mathbb{E}\left(\xi^{4}\right)=3 \sigma^{4}$ for $\xi \sim N\left(0, \sigma^{2}\right)$.

[Soln]

a. Note that $(*)$ implies that X_{t} is a continuous process satisfying

$$
\text { (i) } \int_{0}^{t} X_{s}^{2} d s<\infty \text { a.s. and (ii) } X_{t}=1+\int_{0}^{t} X_{s} d B_{s}
$$

Property (i) implies that $\int_{0}^{t} X_{s} d B_{s}$ is a (continuous) local martingale and so is X_{t} from (ii). Also, $Y_{t}:=\int_{0}^{t} B_{s}^{2} d s$, being an increaisng function of t, is a FV process and hence is a semimartingale. Note that $Z_{t}=f\left(X_{t}, Y_{t}\right)$ where $f(x, y)=x e^{-y}$. Clearly, $Z_{0}=X_{0}=1$ and $f \in C^{2}\left(\mathbb{R}^{2}\right)$, with

$$
f_{x}(x, y)=e^{-y}=-f_{x y}(x, y) ; \quad f_{x x}=0 ; \quad f_{y}(x, y)=-x e^{-y}=-f(x, y) \quad \text { and } \quad f_{y y}=f
$$

Applying (vector-valued) Itô's formula to $Z_{t}=f\left(X_{t}, Y_{t}\right)$ we have

$$
d Z_{t}=d\left[f\left(X_{t}, Y_{t}\right)\right]=f_{x} d X_{t}+f_{y} d Y_{t}+\frac{1}{2} f_{x x} d[X]_{t}+f_{x y} d[X, Y]_{t}+\frac{1}{2} f_{y y} d[Y]_{t}
$$

Since Y_{t} is a FV process, the quadratic (co)variation processes $[X, Y]_{t}=[Y]_{t}=0$. Noting further that $\quad d Y_{t}=B_{t}^{2} d t, \quad$ from $(*)$ we have,

$$
\begin{aligned}
d Z_{t} & =f_{x}\left(X_{t}, Y_{t}\right) d X_{t}+f_{y}\left(X_{t}, Y_{t}\right) d Y_{t}=e^{-Y_{t}} d X_{t}-f\left(X_{t}, Y_{t}\right) d Y_{t} \\
& =e^{-Y_{t}} X_{t} d B_{t}-Z_{t} B_{t}^{2} d t=Z_{t}\left(d B_{t}-B_{t}^{2} d t\right)
\end{aligned}
$$

b. Integrating factor method or an educated guess (together with an application of Itô formula) shows that

$$
X_{t}=e^{B_{t}-\frac{1}{2} t}
$$

is $\underline{\mathbf{a}}$ solution to the $\operatorname{SDE}(*)$. The uniqueness theorem ensures that this is the (unique) solution. Note that the uniqueness theorem is applicable because the coefficient of the SDE is $b(x)=x$ and it satisfies both the Lipschitz and Growth conditions:

$$
|b(x)-b(y)| \leq K|x-y| \quad \text { and } \quad|b(x)|^{2} \leq K\left(1+|x|^{2}\right) \quad \text { with } K=1
$$

c. From nonegativity of X_{t} and $Y_{t}:=\int_{0}^{t} B_{s}^{2} d s$ it follows that, $0 \leq Z_{t}=X_{t} e^{-Y_{t}} \leq X_{t}$ and as a result,

$$
\mathbb{E}\left(Z_{t}^{2}\right) \leq \mathbb{E}\left(X_{t}^{2}\right)=\mathbb{E}\left[e^{2 B_{t}-t}\right]=e^{-t} e^{\frac{1}{2} 4 t}=e^{t}
$$

d. Note that $Z_{t} \in \mathcal{L}^{2}(B)$, because, from part (c),

$$
\int_{0}^{1} \mathbb{E}\left(Z_{t}^{2}\right) d t \leq \int_{0}^{1} e^{t} d t \leq(e-1)<\infty
$$

We can then apply Itô isometry and this leads to (i):

$$
\mathbb{E}\left[\left(\int_{0}^{1} Z_{t} d B_{t}\right)^{2}\right]=\int_{0}^{1} \mathbb{E}\left(Z_{t}^{2}\right) d t \leq(e-1)<\infty
$$

For (ii), note that using Fubini and (two times) Cauchy-Schwartz we have

$$
\begin{aligned}
\mathbb{E}\left[\int_{0}^{1}\left|Z_{t} B_{t}^{2}\right| d t\right] & =\int_{0}^{1} E\left[\left|Z_{t} B_{t}^{2}\right|\right] d t \leq \int_{0}^{1}\left(E\left[Z_{t}^{2}\right]\right)^{\frac{1}{2}}\left(E\left[B_{t}^{4}\right]\right)^{\frac{1}{2}} d t \\
& \leq\left(\int_{0}^{1} E\left[Z_{t}^{2}\right] d t\right)^{\frac{1}{2}}\left(\int_{0}^{1} E\left[B_{t}^{4}\right] d t\right)^{\frac{1}{2}} \leq(e-1)^{\frac{1}{2}}\left(\int_{0}^{1} 3 t^{2} d t\right)^{\frac{1}{2}} \\
& =\sqrt{e-1}<\infty
\end{aligned}
$$

5. Let $0<T<\infty$. Suppose H is a predictable process satisfying

$$
\int_{0}^{T} H_{t}^{2} d t<\infty, \quad \text { a.s. }
$$

and let $Z_{t} \equiv Z_{t}(H)$ be given by

$$
\begin{equation*}
Z_{t}(H)=\exp \left\{\int_{0}^{t} H_{s} d B_{s}-\frac{1}{2} \int_{0}^{t} H_{s}^{2} d s\right\} \tag{5}
\end{equation*}
$$

c. Show that if $(\dagger \dagger)$ holds then $\mathbb{E}\left(\left(Z_{T}^{(n)}\right)^{2}\right) \leq e^{C}$, for all $n \geq 1$.

Hint: Argue that $\left(Z_{t}^{(n)}\right)^{2} \leq M_{t}^{(n)} e^{C}$ for some suitable martingale $M_{t}^{(n)}$ with $M_{0}^{(n)}=1$.
d. Show that, under $(\dagger \dagger), \mathbb{E}\left[Z_{T}\right]=1$.

Hint: Argue that $\sigma_{n} \rightarrow T$ a.s. and $Z_{T}^{(n)} \rightarrow Z_{T}$ a.s. Use Question 1 to conclude that $\left\{Z_{T}^{(n)}, n \geq 1\right\}$ is uniformly integrable. Recall further that for $X, X_{n} \in L^{1}(n \geq 1), X_{n} \rightarrow X$ in L^{1} if and only if (i) $X_{n} \rightarrow X$ in probability and (ii) $\left\{X_{n}, n \geq 1\right\}$ is uniformly integrable.

[Soln]

a. Note that under $(\dagger), M_{t}:=\int_{0}^{t} H_{s} d B_{s}$ is a local martingale and $N_{t}:=\int_{0}^{t} H_{s}^{2} d s$ is a FV process on $[0, T]$. In particular, both of them are semimartingales. Since $Z_{t} \equiv Z_{t}(H)=$ $f\left(M_{t}, N_{t}\right)$ where $f(x, y)=e^{x-\frac{1}{2} y}$ and both M and N are continous, it follows that Z_{t} is also continuous. Noting that $f \in C^{2}\left(\mathbb{R}^{2}\right)$, we can apply (vector-valued) Itô formula to $Z_{t}=f\left(M_{t}, N_{t}\right)$ to obtain

$$
\begin{aligned}
d Z_{t} & =f_{x} d M_{t}+f_{y} d N_{t}+\frac{1}{2} f_{x x} d[M]_{t}+f_{x y} d[M, N]_{t}+\frac{1}{2} f_{y y} d[N]_{t} \\
& =f_{x} d M_{t}+f_{y} d N_{t}+\frac{1}{2} f_{x x} d[M]_{t}, \quad \text { since }[N]_{t}=[M, N]_{t}=0
\end{aligned}
$$

Noting that $[M]_{t}=\int_{0}^{t} H_{s}^{2} d s=N_{t}$ and $f_{x}=f_{x x}=f=-2 f_{y}$, we get

$$
Z_{t}=Z_{0}+\int_{0}^{t} f\left(M_{s}, N_{s}\right) d M_{s}=1+\int_{0}^{t} Z_{s} d M_{s}=1+\int_{0}^{t} Z_{s} H_{s} d B_{s}
$$

Now, almost sure continuity of Z implies that

$$
\int_{0}^{t}\left(Z_{s} H_{s}\right)^{2} d s \leq\left(\sup _{s \in[0, T]} Z_{s}\right) \int_{0}^{t} H_{s}^{2} d s<\infty \quad \text { (a.s.) }
$$

This in turn implies that $\int_{0}^{t} Z_{s} H_{s} d B_{s}$ and hence $Z_{t}=1+\int_{0}^{t} Z_{s} H_{s} d B_{s}$ is a (continuous) local martingale.
b. Let $n \geq 1$. Then

$$
\begin{aligned}
Z_{t}^{(n)} & =Z_{t \wedge \sigma_{n}}=e^{\int_{0}^{t \wedge \sigma_{n}} H_{s} d B_{s}-\frac{1}{2} \int_{0}^{t \wedge \sigma_{n}} H_{s}^{2} d s}=e^{\int_{0}^{t} H_{s} \mathbf{1}_{\left[0, \sigma_{n}\right]}(s) d B_{s}-\frac{1}{2} \int_{0}^{t} H_{s}^{2} \mathbf{1}_{\left[0, \sigma_{n}\right]}(s) d s} \\
& =e^{\int_{0}^{t} H_{s}^{(n)} d B_{s}-\frac{1}{2} \int_{0}^{t}\left(H_{s}^{(n)}\right)^{2} d s}=Z_{t}\left(H^{(n)}\right), \quad \text { from the definition of } Z(H) .
\end{aligned}
$$

c. First note that, since $H^{(n)}$ satisfies (\dagger), it follows from part (a) that $Z_{t}^{(n)}=Z_{t}\left(H^{(n)}\right)$ is a continuous local martingale. But it is also nonnegative and hence by Question 1(c), it is a supermartingale. The fact that $E\left(Z_{t}^{(n)}\right)=1$ then implies that $Z_{t}^{(n)}$ is a martingale. The same argument will also lead to the conclusion that $Z_{t}\left(2 H^{(n)}\right)$ is a martingale.

Next note that from ($\dagger \dagger$) it follows that

$$
\begin{aligned}
\left(Z_{t}^{(n)}\right)^{2} & =e^{2 \int_{0}^{t} H_{s}^{(n)} d B_{s}-\int_{0}^{t}\left(H_{s}^{(n)}\right)^{2} d s}=e^{\int_{0}^{t} 2 H_{s}^{(n)} d B_{s}-\frac{1}{2} \int_{0}^{t}\left(2 H_{s}^{(n)}\right)^{2} d s+\int_{0}^{t}\left(H_{s}^{(n)}\right)^{2} d s} \\
& =Z_{t}\left(2 H^{(n)}\right) e^{\int_{0}^{t}\left(H_{s}^{(n)}\right)^{2} d s} \leq Z_{t}\left(2 H^{(n)}\right) e^{C}
\end{aligned}
$$

where, as mentioned earlier, $Z_{t}\left(2 H^{(n)}\right)$ is a martingale. Hence

$$
E\left[\left(Z_{T}^{(n)}\right)^{2}\right] \leq E\left[Z_{t}\left(2 H^{(n)}\right)\right] e^{C}=E\left[Z_{0}\left(2 H^{(n)}\right)\right] e^{C}=e^{C}
$$

d. Almost sure continuity of Z implies that $\exists \Omega_{0}$ with $P\left(\Omega_{0}\right)=1$ such that $Z_{t}(\omega)$ is continuous in t for each $\omega \in \Omega_{0}$. Then for $\omega \in \Omega_{0}, Z^{*}(\omega):=\sup _{t \in[0, T]} Z_{t}(\omega)<\infty$. Note that for all $n \geq Z^{*}(\omega), \quad \sigma_{n}(\omega)=T$. Hence $\lim _{n \rightarrow \infty} \sigma_{n}(\omega)=T$ for all $\omega \in \Omega_{0}$. In other words, $\sigma_{n} \rightarrow T$ (a.s.), as $n \rightarrow \infty$. Consequently, $\lim _{n \rightarrow \infty} Z_{T}^{(n)}=\lim _{n \rightarrow \infty} Z_{T \wedge \sigma_{n}}=Z_{T} \quad$ (a.s.) In particular, $Z_{T}^{(n)}$ converges to Z_{T} in probability. The L^{2}-boundedness of $\left\{Z_{T}^{(n)}, n \geq 1\right\}$, obtained in part (c), together with Question 1(b), imply uniform integrability of the sequence. Uniform integrability and convergence in prob imply that $Z_{T}^{(n)}$ converges to Z_{T} in L^{1}. In particular, $E\left[Z_{T}\right]=\lim _{n \rightarrow \infty} E\left[Z_{T}^{(n)}\right]$. But $E\left[Z_{T}^{(n)}\right]=1$ for $n \geq 1$. Hence, $E\left[Z_{T}\right]=1$.

Some comments on grading of Question 4 and 5

- Before applying any theorem or formula in/to a situation, you should make sure that your situation satisfies all conditions stated in the statement of the theorem/formula. For example,
- Ito isometry: integrand must be in $\mathcal{L}^{2}(B)$
- Ito formula: function $f \in C^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}^{n}\right)$.

Note that function f should be deterministic, as the notations suggest, and should not involve ω (randomness). $f(t, x)=x \exp \left(\int_{0}^{t} H_{s}^{2} d s\right)$ where H_{s} is a stochastic process is not an appropriate function to apply Ito formula to.
Also, it is better to write out the full/complete formula and then fill-in the values (e.g., $f_{x x}=0$ or $[X, Y]_{t}=0$).

- Uniqueness theorem of solution: coefficients must satisfy growth and Lipschitz conditions.
- In (5a) one needs, as intermediate step, $\int_{0}^{t} Z_{s} H_{s} d B_{s}$ to be a local martingale. This needs proof. One way is to check that $\int_{0}^{t} Z_{s}^{2} H_{s}^{2} d s<\infty$ a.s. Then the integral makes sense and is a local martingale.

