
Solution to Exam Stochastic Differential Equations (Mastermath)
08-06-2015; 13:30 – 16:30.

1.(5) a. Let X ∈ L1 be a random variable and let F and G be σ-algebras such that F ⊆ G. Show
that E(E(X|G)|F) = E(X|F).

(5) b. Let {Xn : n ∈ N} be a sequence of random variables. Assume there is a constant C such
that for all integers n ∈ N, E(|Xn|2) ≤ C. Show that X is uniformly integrable.

(5) c. Let (Xt)t≥0 be a nonnegative local martingale such that E(X0) < ∞. Show that X is a
supermartingale.

(2) d. Let 0 < a < b and assume ξ : Ω → R is Fa-measurable. Use the definition to show that
1(a,b]ξ is predictable.

(4) e. Use the previous exercise and an approximation argument to show that any left-continuous
adapted process Z : R× Ω→ R is predictable.

[Soln]

a. Let Z = E(E(X|G)|F). For every F ∈ F we also have that F ∈ G and thus by the
definition of the conditional expectation we find that∫

F
Z dP =

∫
F
E(X|G) dP =

∫
F
X dP.

Since Z is F-measurable the required identity follows.

b. For each r > 0 we have∫
{|Xn|>r}

|Xn| dP ≤ r−1

∫
{|Xn|>r}

|Xn|2 dP ≤ r−1

∫
Ω
|Xn|2 dP ≤ r−1C.

Therefore,

lim
r→∞

sup
n≥1

∫
{|Xn|>r}

|Xn|P ≤ lim
r→∞

r−1C = 0.

c. See one of the exercises of chapter 3.

d. The definition of the predictability can be found in the lecture notes. There are at least
two possible solutions:

1. Approximate ξ by Fa-measurable simple functions ξn, then 1(a,b]ξn can be written as
a linear combination of predictable rectangles and hence is predictable. Then also the
pointwise limit 1(a,b]ξ is predictable.

2. Check that 1(a,b]ξ ∈ B is in the predictable σ-algebra. If 0 /∈ B this is simple. If 0 ∈ B,
then some more rewriting is required.

e. Use d and approximation. See the lecture notes for details.

END
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2. Let B be a standard Brownian motion and let Ft = σ(Bs : s ≤ t).

(6) a. Let α ≥ 0. Using the properties of conditional expectations and the independent increments
of Brownian motion show that Xt = cosh(α|Bt|) exp(−α2t/2) is a martingale.

Hint: Recall that cosh(|x|) = cosh(x) = (ex + e−x)/2. You may also use the identity:
E(exp(ξ)) = exp(σ2/2) for ξ ∼ N(0, σ2).

Fix A > 0 and let τ = inf{t ≥ 0 : |Bt| = A}.

(3) b. Prove that τ is a stopping time.

(3) c. Show that E(Xt∧τ ) = 1 for all t ≥ 0.

(5) d. Show that E(Xτ ) = 1 and use this to find a formula for E(e−λτ ) where λ ≥ 0.

Hint: You may use the known fact that τ <∞ almost surely.

See next page.
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[Soln]

a. Note that for s < t by linearity of the conditional expectation

E(Xt|Fs) =
1

2
exp(−α2t/2)

(
E(exp(αBt)|Fs) + E(exp(−αBt)|Fs)

)
.

We calculate both conditional expectations.

E(exp(αBt)|Fs) = E(exp(α(Bt −Bs)) exp(αBs)|Fs)
= exp(αBs)E(exp(α(Bt −Bs))|Fs) (taking out what is known)

= exp(αBs)E(exp(α(Bt −Bs))) (independence)

= exp(αBs) exp(α2(t− s)/2) (α(Bt −Bs) ∼ N(0, α2(t− s)))

The other conditional conditional expectation can be calculated in the same way and is

E(exp(αBt)|Fs) = exp(−αBs) exp(α2(t− s)/2).

Putting everything together we find

E(Xt|Fs) = exp(−α2t/2) cosh(αBs) exp(α2(t− s)/2) = Xs.

b. For every t ≥ 0 we can write

{τ > t} = {∀s ∈ [0, t] Bs < A} = {∀s ∈ [0, t] ∩Q Bs < A} =
⋂

s∈[0,t]∩Q

{Bs < A} ∈ Ft.

where in the last step we used the adaptedness of B and the fact that the countable union
of sets in Ft is in Ft again.
You may also use a theorem from the lecture notes. Here it is important to observe the
continuity of B and the closedness of the set {A,−A}.

c. Since τ is a stopping time and (Xt)t≥0 a martingale, it follows from the stopping time the-
orem that (Xt∧τ )t≥0 is a martingale again. Therefore, by the properties of the conditional
expectation:

E(Xt∧τ ) = E(E(Xt∧τ |mathcalF0)) = E(X0) = 0.

d. First note that limt→∞Xt∧τ ) = Xτ pointwise on the set {τ <∞}. Observe that |Bt∧τ | ≤
A. Therefore,

|Xt∧τ | ≤ cosh(αA) exp(−α2(t ∧ τ)/2) ≤ cosh(αA).

Since the constant function cosh(αA) is in L1, we may apply the dominated convergence
theorem to conclude

1 = lim
t→∞

E(Xt∧τ ) = E( lim
t→∞

Xt∧τ ) = E(Xτ ).

Next we calculate E(Xτ ) in a different way. Observe that on the set {τ < ∞} we have
|Bτ | = A and hence

1 = E(Xτ ) = E(cosh(αA) exp(−α2τ/2)) = cosh(αA)E(exp(−α2τ/2)).

Taking α2/2 = λ we find that E(exp(−α2τ/2)) = 1/ cosh(
√

2λ).

END
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3. Let M be a continuous L2-martingale. We will show below, in steps (a) through (c), that
M2 − [M ] is a martingale. Let t > s ≥ 0. Consider a partition of [0, t] given by

0 = t0 < t1 < · · · < tk = s < · · · < tn = t.

(4) a. Show that for ti ≥ s,

E
[
M2
ti+1
−M2

ti − (Mti+1 −Mti)
2
∣∣∣Fs] = 0.

(2) b. Derive that

E

[
M2
t −

n−1∑
i=0

(Mti+1 −Mti)
2

∣∣∣∣∣Fs
]

= M2
s −

k−1∑
i=0

(Mti+1 −Mti)
2.

(3) c. Using the previous identity and the existence theorem for quadratic variations of continuous
L2-martingales show that M2 − [M ] is a martingale.

(6) d. Let M and N be continuous L2-martingales with quadratic covariation [M,N ]t = 2t − 1.
Let X : R+ × Ω → R be given by Xt = Mt + cos(t). Let U : R+ → R and V : R+ → R be
given by Ut = t and Vt = t2. Use the properties of quadratic (co)variations to calculate the
[U ·X,V ·N ]t for t ≥ 0.

See next page.
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[Soln]

a. The tower property for s ≤ ti gives that E(·|Fs) = E(E(·|Fti)|Fs). Thus by the definition
of a martingale we can write

E(M2
ti+1
−M2

ti − (Mti+1 −Mti)
2|Fs) = E(2Mti(Mti+1 −Mti)|Fs)

= E(E(2Mti(Mti+1 −Mti)|Fti)|Fs)
= E(2MtiE((Mti+1 −Mti)|Fti)|Fs)
= E(2Mti0|Fs) = 0.

b. Note that M2
t = M2

s +
∑n−1

i=k (M2
ti+1
−M2

ti). Therefore, we find

E

[
M2
t −

n−1∑
i=0

(Mti+1 −Mti)
2

∣∣∣∣∣Fs
]
−

(
M2
s −

k−1∑
i=0

(Mti+1 −Mti)
2

)

= E

[
M2
t −M2

s −
n−1∑
i=k

(Mti+1 −Mti)
2

∣∣∣∣∣Fs
]

=

n−1∑
i=k

E
[
M2
ti+1
−M2

ti − (Mti+1 −Mti)
2
∣∣∣Fs] = 0

where in the last step we used part a.

c. The existence theorem for quadratic variations yields that for a sequence of partitions
(πm)m≥1 of [0, t] with mesh(πm) → 0 we have with πm = {tm0 , . . . , tmnm} with tm0 = 0 and
tmnm = t that

nm−1∑
i=0

(Mtmi+1
−Mtmi

)2 → [M ]t in L1.

Without loss of generality we can assume s ∈ πm for all m. By the contractivity of the
conditional expectation (which means ‖E(X|Fs)‖L1 ≤ ‖X‖L1) we also find that

E

[
M2
t −

n−1∑
i=0

(Mti+1 −Mti)
2

∣∣∣∣∣Fs
]
→M2

t − [M ]t in L1.

Similarly, letting km be such that tkm = s, we find

M2
s −

km−1∑
i=0

(Mtmi+1
−Mtmi

)2 →M2
s − [M ]s in L1.

d. First note that [U ·X,V Ṅ ] = UV ·[X,N ]. Also [cos(·), N ] = 0 because cos(·) is of bounded
variation. Thus [X,N ] = [M,N ] + [cos(·), N ] = [M,N ] and we find

[U ·X,V Ṅ ]t = (UV · [M,N ])t =

∫ t

0
s3(2s− 1) ds =

∫ t

0
2s4 − s3 ds =

2t5

5
− t4

4
.

END
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4. Let (Bt) be a standard Brownian motion defined on a (filtered) probability space (Ω,F (Ft), P ).
Suppose Xt is a process satisfying the SDE

dXt = XtdBt, X0 = 1. (∗)

Define the process (Zt)t∈[0,1] by

Zt = Xte
−

∫ t
0 B

2
sds.

(6) a. Apply Itô’s formula to show that

dZt = Zt(dBt −B2
t dt), Z0 = 1. (∗∗)

(5) b. Find the solution Xt satisfying the SDE (∗).

Hint: You may propose a solution and appeal to the uniqueness theorem.

(3) c. Use the solution in (b) to show that E(Z2
t ) ≤ et.

Hint: You may use the identity E(exp(ξ)) = exp(σ2/2) for ξ ∼ N(0, σ2).

(6) d. In the “integrated version” of the SDE (∗∗) two relevant random variables are
∫ 1

0 ZtdBt and∫ 1
0 ZtB

2
t dt. Use (c) to show that both of the following hold.

(i) E

[(∫ 1

0
ZtdBt

)2
]
<∞ and (ii) E

[∫ 1

0
|ZtB2

t |dt
]
<∞.

Hint: If needed, you may assume the expressions for the moments of Gaussian distribution,
without proof. For example, E(ξ4) = 3σ4 for ξ ∼ N(0, σ2).

See next page.
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[Soln]

a. Note that (∗) implies that Xt is a continuous process satisfying

(i)

∫ t

0
X2
s ds <∞ a.s. and (ii) Xt = 1 +

∫ t

0
Xs dBs.

Property (i) implies that
∫ t

0 Xs dBs is a (continuous) local martingale and so is Xt from

(ii). Also, Yt :=
∫ t

0 B
2
s ds, being an increaisng function of t, is a FV process and hence is

a semimartingale. Note that Zt = f(Xt, Yt) where f(x, y) = xe−y. Clearly, Z0 = X0 = 1
and f ∈ C2(R2), with

fx(x, y) = e−y = −fxy(x, y); fxx = 0; fy(x, y) = −xe−y = −f(x, y) and fyy = f.

Applying (vector-valued) Itô’s formula to Zt = f(Xt, Yt) we have

dZt = d[f(Xt, Yt)] = fxdXt + fydYt +
1

2
fxxd[X]t + fxyd[X,Y ]t +

1

2
fyyd[Y ]t.

Since Yt is a FV process, the quadratic (co)variation processes [X,Y ]t = [Y ]t = 0. Noting
further that dYt = B2

t dt, from (∗) we have,

dZt = fx(Xt, Yt)dXt + fy(Xt, Yt)dYt = e−YtdXt − f(Xt, Yt)dYt

= e−YtXtdBt − ZtB2
t dt = Zt(dBt −B2

t dt).

b. Integrating factor method or an educated guess (together with an application of Itô for-
mula) shows that

Xt = eBt−
1
2
t

is a solution to the SDE (∗). The uniqueness theorem ensures that this is the (unique)
solution. Note that the uniqueness theorem is applicable because the coefficient of the
SDE is b(x) = x and it satisfies both the Lipschitz and Growth conditions:

|b(x)− b(y)| ≤ K|x− y| and |b(x)|2 ≤ K(1 + |x|2) with K = 1.

c. From nonegativity of Xt and Yt :=
∫ t

0 B
2
s ds it follows that, 0 ≤ Zt = Xte

−Yt ≤ Xt and as
a result,

E(Z2
t ) ≤ E(X2

t ) = E[e2Bt−t] = e−te
1
2

4t = et.

d. Note that Zt ∈ L2(B), because, from part (c),∫ 1

0
E(Z2

t )dt ≤
∫ 1

0
etdt ≤ (e− 1) <∞.

We can then apply Itô isometry and this leads to (i):

E

[(∫ 1

0
ZtdBt

)2
]

=

∫ 1

0
E(Z2

t )dt ≤ (e− 1) <∞.

For (ii), note that using Fubini and (two times) Cauchy-Schwartz we have

E
[∫ 1

0
|ZtB2

t | dt
]

=

∫ 1

0
E[|ZtB2

t |]dt ≤
∫ 1

0
(E[Z2

t ])
1
2 (E[B4

t ])
1
2dt

≤
(∫ 1

0
E[Z2

t ]dt

) 1
2
(∫ 1

0
E[B4

t ]dt

) 1
2

≤ (e− 1)
1
2

(∫ 1

0
3t2dt

) 1
2

=
√
e− 1 < ∞.

END
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5. Let 0 < T <∞. Suppose H is a predictable process satisfying∫ T

0
H2
t dt <∞, a.s. (†)

and let Zt ≡ Zt(H) be given by

Zt(H) = exp

{∫ t

0
Hs dBs −

1

2

∫ t

0
H2
s ds

}
.

(5) a. Use Itô’s formula to Z to show that, under (†), Z is a continuous local martingale.

In the Girsanov Theorem an important assumption is that (Zt)t∈[0,T ] is a martingale. Since Z
is nonnegative using Question (1c) one sees that Z is a supermartingale. It can be shown that
(Zt)t∈[0,T ] is a martingale if and only if E[ZT ] = 1. In this exercise we will check the latter in
several steps under the assumption that there is a constant C such that∫ T

0
H2
t dt ≤ C, a.s. (††)

Let σn = inf{0 ≤ t ≤ T : Zt ≥ n}, where we set σn = T if the set is empty. In this way

(σn)n≥1 is a localizing sequence for Z. Denote by Z
(n)
t the stopped process Zt∧σn . It then

follows immediately that

E
(
Z

(n)
t

)
= 1, n ≥ 1, 0 ≤ t ≤ T.

(3) b. Show from the definitions that Z
(n)
t = Zt(H

(n)) a.s., where H(n) is given by

H(n)
s (ω) = Hs(ω)1[ 0, σn(ω)](s), for 0 ≤ s ≤ T.

(5) c. Show that if (††) holds then E
((
Z

(n)
T

)2) ≤ eC , for all n ≥ 1.

Hint: Argue that
(
Z

(n)
t

)2
≤M (n)

t eC for some suitable martingale M
(n)
t with M

(n)
0 = 1.

(4) d. Show that, under (††), E[ZT ] = 1.

Hint: Argue that σn → T a.s. and Z
(n)
T → ZT a.s. Use Question 1 to conclude that {Z(n)

T , n ≥ 1}
is uniformly integrable. Recall further that for X, Xn ∈ L1 (n ≥ 1), Xn → X in L1 if and only
if (i) Xn → X in probability and (ii) {Xn, n ≥ 1} is uniformly integrable.

See next page.
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[Soln]

a. Note that under (†), Mt :=
∫ t

0 Hs dBs is a local martingale and Nt :=
∫ t

0 H
2
s ds is a FV

process on [0, T ]. In particular, both of them are semimartingales. Since Zt ≡ Zt(H) =

f(Mt, Nt) where f(x, y) = ex−
1
2
y and both M and N are continous, it follows that Zt is

also continuous. Noting that f ∈ C2(R2), we can apply (vector-valued) Itô formula to
Zt = f(Mt, Nt) to obtain

dZt = fxdMt + fydNt +
1

2
fxxd[M ]t + fxyd[M,N ]t +

1

2
fyyd[N ]t

= fxdMt + fydNt +
1

2
fxxd[M ]t, since [N ]t = [M,N ]t = 0.

Noting that [M ]t =
∫ t

0 H
2
s ds = Nt and fx = fxx = f = −2fy, we get

Zt = Z0 +

∫ t

0
f(Ms, Ns) dMs = 1 +

∫ t

0
Zs dMs = 1 +

∫ t

0
ZsHs dBs.

Now, almost sure continuity of Z implies that∫ t

0
(ZsHs)

2 ds ≤

(
sup
s∈[0,T ]

Zs

)∫ t

0
H2
s ds <∞ (a.s.)

This in turn implies that
∫ t

0 ZsHs dBs and hence Zt = 1 +
∫ t

0 ZsHs dBs is a (continuous)
local martingale.

b. Let n ≥ 1. Then

Z
(n)
t = Zt∧σn = e

∫ t∧σn
0 Hs dBs− 1

2

∫ t∧σn
0 H2

s ds = e
∫ t
0 Hs1[ 0, σn](s) dBs− 1

2

∫ t
0 H

2
s1[ 0, σn](s) ds

= e
∫ t
0 H

(n)
s dBs− 1

2

∫ t
0 (H

(n)
s )2 ds = Zt(H

(n)), from the definition of Z(H).

c. First note that, since H(n) satisfies (†), it follows from part (a) that Z
(n)
t = Zt(H

(n)) is
a continuous local martingale. But it is also nonnegative and hence by Question 1(c), it

is a supermartingale. The fact that E
(
Z

(n)
t

)
= 1 then implies that Z

(n)
t is a martingale.

The same argument will also lead to the conclusion that Zt(2H
(n)) is a martingale.

Next note that from (††) it follows that(
Z

(n)
t

)2
= e2

∫ t
0 H

(n)
s dBs−

∫ t
0 (H

(n)
s )2 ds = e

∫ t
0 2H

(n)
s dBs− 1

2

∫ t
0 (2H

(n)
s )2 ds+

∫ t
0 (H

(n)
s )2 ds

= Zt(2H
(n)) e

∫ t
0 (H

(n)
s )2 ds ≤ Zt(2H

(n)) eC ,

where, as mentioned earlier, Zt(2H
(n)) is a martingale. Hence

E

[(
Z

(n)
T

)2
]
≤ E

[
Zt(2H

(n))
]
eC = E

[
Z0(2H(n))

]
eC = eC .

d. Almost sure continuity of Z implies that ∃ Ω0 with P (Ω0) = 1 such that Zt(ω) is contin-
uous in t for each ω ∈ Ω0. Then for ω ∈ Ω0, Z∗(ω) := supt∈[0,T ] Zt(ω) < ∞. Note that
for all n ≥ Z∗(ω), σn(ω) = T . Hence limn→∞ σn(ω) = T for all ω ∈ Ω0. In other words,

σn → T (a.s.), as n→∞. Consequently, limn→∞ Z
(n)
T = limn→∞ ZT∧σn = ZT (a.s.)

In particular, Z
(n)
T converges to ZT in probability. The L2-boundedness of {Z(n)

T , n ≥ 1},
obtained in part (c), together with Question 1(b), imply uniform integrability of the se-

quence. Uniform integrability and convergence in prob imply that Z
(n)
T converges to ZT

in L1. In particular, E[ZT ] = limn→∞E
[
Z

(n)
T

]
. But E

[
Z

(n)
T

]
= 1 for n ≥ 1. Hence,

E[ZT ] = 1.
END
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Some comments on grading of Question 4 and 5

• Before applying any theorem or formula in/to a situation, you should make sure that
your situation satisfies all conditions stated in the statement of the theorem/formula. For
example,

– Ito isometry: integrand must be in L2(B)

– Ito formula: function f ∈ C1,2(R+ × Rn).

Note that function f should be deterministic, as the notations suggest, and should not
involve ω (randomness). f(t, x) = x exp(

∫ t
0 H

2
s ds) where Hs is a stochastic process

is not an appropriate function to apply Ito formula to.

Also, it is better to write out the full/complete formula and then fill-in the values
(e.g., fxx = 0 or [X,Y ]t = 0).

– Uniqueness theorem of solution: coefficients must satisfy growth and Lipschitz con-
ditions.

• In (5a) one needs, as intermediate step,
∫ t

0 ZsHs dBs to be a local martingale. This needs

proof. One way is to check that
∫ t

0 Z
2
sH

2
s ds <∞ a.s. Then the integral makes sense and

is a local martingale.

END


