- Phones / advanced calculators are not allowed
- Please answer exercises 1,3 and $2,4,5$ on separate pages.

1. Exercise

a. Prove that if M is a continuous local martingale such that $\mathbb{E}\left(\sup _{s \geq 0}\left|M_{s}\right|\right)<\infty$, then M is a martingale.
b. Define uniform integrability of a collection of measurable functions.

Prove that for an integrable random variable X defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the collection

$$
\{\mathbb{E}(X \mid \mathcal{G}): \mathcal{G} \text { sub-sigma algebra of } \mathcal{F}\}
$$

is uniformly integrable.
c. Let M be a L^{2} bounded continuous martingale with $M_{0}=0$ and $H \in L^{2}(K \bullet M)$ resp. $H \cdot K, K \in L^{2}(M)$.

1. Show associativity, i.e. $H \bullet(K \bullet M)=(H \cdot K) \bullet M$.
2. Demonstrate that $\left\langle\int_{0} H_{s} d M_{s}\right\rangle_{t}=\int_{0}^{t} H_{s}^{2} d\langle M\rangle_{s}$.

2. Exercise

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ be a filtered probability space. Let $\left(X_{t}\right)_{t \geq 0}$ and $\left(Y_{t}\right)_{t \geq 0}$ be two independent $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-Brownian motions with $X_{0}=Y_{0}=0,\left(H_{t}\right)_{t \geq 0}$ a progressively measurable process and

$$
\begin{aligned}
B_{t} & =\int_{0}^{t} \cos \left(H_{s}\right) d X_{s}+\int_{0}^{t} \sin \left(H_{s}\right) d Y_{s} \\
\hat{B}_{t} & =\int_{0}^{t} \sin \left(H_{s}\right) d X_{s}-\int_{0}^{t} \cos \left(H_{s}\right) d Y_{s}
\end{aligned}
$$

Show that B and \hat{B} are two independent Brownian motions w.r.t $\left(\mathcal{F}_{t}\right)_{t \geq 0}$.

3. Exercise

Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion defined on the filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$ and $X \equiv\left(X_{t}\right)_{t \geq 0}$ a continuous adapted process satisfying

$$
X_{t}=x_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}, \quad t \geq 0
$$

where $x_{0} \in \mathbb{R}$ and $\sigma: \mathbb{R} \rightarrow(0, \infty)$ is continuous. Suppose $a<x_{0}<b$. In the following you will derive the probability distribution of X_{T} where T is the exit time, for X, of the interval (a, b), i.e., $T=\inf \left\{t \geq 0: X_{t} \notin(a, b)\right\}$.
(1) a. Define the level- u crossing time of X as $T_{u}=\inf \left\{t \geq 0: X_{t}=u\right\}$. Explain why $T=T_{a} \wedge T_{b}$.
b. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{2} function. Argue that $f\left(X_{t}\right)$ and $f\left(X_{t \wedge T}\right)$ are semimartingales by deriving their explicit decompositions.
c. Let M be a local martingale defined by

$$
\begin{equation*}
M_{t}=\int_{0}^{t \wedge T} f^{\prime}\left(X_{s}\right) \sigma\left(X_{s}\right) d B_{s}, \quad t \geq 0 \tag{2}
\end{equation*}
$$

Show that $\mathbb{E}\left(\langle M\rangle_{t}\right)<\infty$ for all $t>0$ and M is a L^{2}-martingale.
d. Show using (b) and (c) that

$$
\begin{equation*}
\mathbb{E}\left(f\left(X_{t \wedge T}\right)\right)=f\left(x_{0}\right)+\frac{1}{2} \mathbb{E}\left(\int_{0}^{t \wedge T} f^{\prime \prime}\left(X_{s}\right) \sigma^{2}\left(X_{s}\right) d s\right) \tag{1}
\end{equation*}
$$

Let g and h be functions defined on $[a, b]$ by

$$
\begin{equation*}
g(y)=\int_{a}^{y} \frac{1}{\sigma^{2}(z)} d z \quad \text { and } \quad h(x)=\int_{a}^{x} g(y) d y-\frac{x-a}{b-a} \int_{a}^{b} g(y) d y \tag{1}
\end{equation*}
$$

e. Show that $h^{\prime \prime}(x)=\frac{1}{\sigma^{2}(x)}$ for $x \in(a, b)$ and $h(x)=0$ for $x \in\{a, b\}$.
f. Show using the previous parts that for all $t>0$

$$
\begin{equation*}
\mathbb{E}(t \wedge T)=2 \mathbb{E}\left(h\left(X_{t \wedge T}\right)\right)-2 h\left(x_{0}\right) \tag{2}
\end{equation*}
$$

g. Conclude that for $t>0$,

$$
\begin{equation*}
\mathbb{E}(t \wedge T) \leq 4 \sup _{x \in[a, b]}|h(x)|<\infty \tag{1}
\end{equation*}
$$

and $\mathbb{E}(T)<\infty$.
h. Use (g) to conclude

$$
\begin{equation*}
\mathbb{E}(T)=-2 \int_{a}^{x_{0}} g(y) d y+2 \frac{x_{0}-a}{b-a} \int_{a}^{b} g(y) d y \tag{2}
\end{equation*}
$$

i. Call now $w(x)=h(x)+\frac{b-x}{b-a}$ for $x \in[a, b]$. Use (d) to show

$$
\begin{equation*}
\mathbb{P}\left(X_{T}=a\right)=\frac{b-x_{0}}{b-a} \quad \text { and } \quad \mathbb{P}\left(X_{T}=b\right)=\frac{x_{0}-a}{b-a} \tag{3}
\end{equation*}
$$

See next page.

4. Exercise

Let $\left(B_{t}\right)$ be a standard Brownian motion defined on the filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$.
(4)
c. Use (a) and (b) to find the explicit form of a geometric mean reverting process satisfying the SDE

$$
\begin{equation*}
d r_{t}=r_{t}\left(\theta-\alpha \ln r_{t}\right) d t+\sigma r_{t} d B_{t}, \quad t>0 \tag{2}
\end{equation*}
$$

where θ, α, σ are positive constants and $r_{0}=1$.

5. Exercise

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$ be a filtered probability space, $\left\{B_{t}, t \geq 0\right\}$ a standard $\left(\mathcal{F}_{t}\right)$-Brownian motion. Suppose $\left(\nu_{t}\right),\left(\mu_{t}\right)$ and $\left(\sigma_{t}\right)$ are continuous adapted processes.
Consider the stochastic process X_{t} satisfying

$$
X_{t}=x+\int_{0}^{t} \mu_{s} d s+\int_{0}^{t} \sigma_{s} d B_{s}, \quad 0 \leq t \leq T, \quad x \in \mathbb{R}
$$

Construct, under appropriate conditions on $\left(\nu_{t}\right),\left(\mu_{t}\right)$ and $\left(\sigma_{t}\right)$, a probability measure \mathbb{Q} on $\left(\Omega, \mathcal{F}_{T},\left(\mathcal{F}_{t}\right), \mathbb{P}\right)$ such that X has the following representation under \mathbb{Q} :

$$
X_{t}=x+\int_{0}^{t} \nu_{s} d s+\int_{0}^{t} \sigma_{s} d \tilde{B}_{s}, \quad 0 \leq t \leq T
$$

where $\left(\tilde{B}_{t}\right)$ is a \mathbb{Q}-BM.
[Hint: Express $X_{t}($ under $\mathbb{P})$ in the desired form for some \tilde{B}_{t}.]

Number of points can be found next to the questions; the grade will be calculated as follows:

$$
\text { Grade }=\frac{\text { Number of points }}{40} \times 9+1
$$

