
Solution to Exam 30-05-2016, Stochastic Differential Equations (Mastermath)

1. [Soln]

a. Let (τn)n≥0 be a localizing sequence for the local martingale M , i.e. for all s, t ∈ R+, s < t
we have

E(Mτn∧t|Fs) = Mτn∧s. (1)

Since sups≥0 |Ms| ∈ L1, we have that for all n, t, |Mτn∧t| ≤ sups≥0 |Ms| is bounded by an
integrable random variable. By dominated convergence we can pull the limit in (1) out and
get the result. [Now taking the limit as n → ∞ in (1) the result follows from the dominated
convergence theorem.]

b. For the definition see the book.
Now call Ak = {|E(X|G)| > k}. We have to show that given ε > 0, ∃K such that

sup
G⊂F

E(1Ak
|E(X|G)|) < ε ∀ k ≥ K.

Since X ∈ L1, we have that for a given ε > 0 there is a δ > 0 such that if P(A) ≤ δ we have
E(|X|1A) ≤ ε. Choose K large enough such that K ≥ E(|X|)/δ. By Chebyshev’s and Jensen
inequality for k ≥ K

P(Ak) ≤ 1

k
E(|E(X|G)|) ≤ 1

k
E(|X|) ≤ δ.

Since Ak ∈ G the result follows from

E(|E(X|G)|1Ak
) ≤ E(E(|X||G)1Ak

) = E(|X|1Ak
) ≤ ε.

c. i) From Itô-isometry

(H • (K •M)t) =

∫ t

0

Hsd

(∫ s

0

KudMu

)
=

∫ t

0

Hs(KsdMs −K0dM0) = ((HK) •M)t

ii) Pick N =
∫ ·
0
HsdMs, then〈∫ ·

0

HsdMs,

∫ ·
0

HsdMs

〉
t

=

∫ t

0

Hsd

〈
M,

∫ ·
0

HudMu

〉
s

=

∫ t

0

H2
sd〈M〉s.
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2. [Soln]

First note that, for all t ≥ 0,∫ t

0

(sin(Hs))
2 ds ≤ t and

∫ t

0

(cos(Hs))
2 ds ≤ t.

Hence the stochastic integrals w.r.t. BM with sin(Hs) and cos(Hs) as integrands, i.e.,∫ t

0

cos(Hs) dXs,

∫ t

0

sin(Hs) dYs,

∫ t

0

sin(Hs) dXs and

∫ t

0

cos(Hs) dYs

are all local martingales. In fact, they are all L2-martingales. Also, clearly they are continuous.
Hence

Bt =

∫ t

0

cos(Hs) dXs +

∫ t

0

sin(Hs) dYs

B̂t =

∫ t

0

sin(Hs) dXs −
∫ t

0

cos(Hs) dYs.

are also continuous local martingales.

From Levy characterization theorem, it will follow that continuous local martingales B and B̂ are
two independent Brownian motions, if we show that the quadratic variation processes are given by

〈B〉t = 〈B̂〉t = t, 〈B , B̂〉t = 0.

But, since X and Y are independent Brownian motions, we have

〈B〉t =

〈∫ (·)

0

cos(Hs) dXs

〉
t

+

〈∫ (·)

0

sin(Hs) dYs

〉
t

+

〈∫ (·)

0

cos(Hs) dXs ,

∫ (·)

0

sin(Hs) dYs

〉
t

=

∫ t

0

(cos(Hs))
2 d〈X〉s +

∫ t

0

(sin(Hs))
2 d〈Y 〉s +

∫ t

0

cos(Hs) sin(Hs) d〈X , Y 〉s

=

∫ t

0

(cos(Hs))
2 ds+

∫ t

0

(sin(Hs))
2 ds+ 0 =

∫ t

0

ds

= t.

Similarly, we can show that 〈B̂〉t = t. Finally,

〈B , B̂〉t =

∫ t

0

cos(Hs) sin(Hs) d〈X〉s −
∫ t

0

(cos(Hs))
2 d〈X , Y 〉s

+

∫ t

0

(sin(Hs))
2 d〈Y , X〉s −

∫ t

0

sin(Hs) cos(Hs) d〈Y 〉s

=

∫ t

0

cos(Hs) sin(Hs) ds− 0 + 0−
∫ t

0

sin(Hs) cos(Hs) ds

= 0.

Hence the proof is complete.
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3. [Soln]

a.) X is continuous and starts at a point x0 ∈ (a, b) hence the exit time of this interval can be
determined by Ta ∧ Tb.

b.) We can use Itô’s formula to show that f(Xt) and f(Xt∧T ) are semimartingales. Note since

〈X〉s =

〈
x0 +

∫ ·
0

σ(Xu)dBu

〉
s

=

∫ s

0

σ2(Xu)du

the decompositions are equal to

f(Xt) = f(x0) +

∫ t

0

f ′(Xs)σ(Xs)dBs +
1

2

∫ t

0

f ′′(Xs)σ
2(Xs)ds

resp. analogous for f(Xt∧T ) which is a combination of a local martingale and stochastic
integral w.r.t. the Lebesgue measure.

c.) First we show that for all t > 0, 〈M〉t ∈ L1 by upper bounding〈∫ ·∧T
0

f ′(Xs)σ(Xs)dBs

〉
t

≤
∫ t

0

sup
0≤u≤T

(f ′)2(Xu)σ2(Xu)du ≤ Ct

where the last inequality follows from the fact that σ is continuous and f ∈ C2. Since M is
a martingale, via Doob’s decomposition we get that (M2

t − 〈M〉t)t≥0 is also a martingale and
E(M2

t ) = E(〈M〉t) <∞, hence M ∈ L2.

d.) Direct consequence.

e.) Trivial.

f.) Follows from

E(h(Xt∧T )) = h(x0) +
1

2
E

(∫ t∧T

0

h′′(Xs)σ
2(Xs)ds

)
= h(x0) +

1

2
E

(∫ t∧T

0

1ds

)
.

g.) It is trivial to show that t ∧ T ∈ L1 and since t ∧ T → T almost surely, we have by monotone
convergence that T ∈ L2

h.) Trivial.

i.) From (d) we get

E(w(Xt∧T )) = w(x0) +
1

2
E

(∫ t∧T

0

w′′(Xs)σ
2(Xs)ds

)
= w(x0) +

1

2
E(t ∧ T )

(f)
= E(h(Xt∧T ))− b− x0

b− a

we can take the limit t→∞ and get

E(w(XT )) = E(h(Xt∧T )) +
b− x0
b− a

=
b− x0
b− a

We use that w(XT ) = h(XT ) + b−XT

b−a and solve the above equation

E(XT ) = x0.

The claim follows from E(XT ) = aP(XT = a) + bP(XT = b) and P(XT = a) +P(XT = b) = 1.
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4. [Soln]

a. We are going to consider solutions of the form

Xt = a(t)

{
x0 +

∫ t

0

b(s) dBs

}
.

Let

(i) Yt = x0 +
∫ t
0
b(s) dBs be a local martingale and

(ii) f(t, x) := a(t)x ∈ C1,2(R+ × R).

Note that Xt = f(t, Yt) and

ft(t, x) = a′(t)x =
a′(t)

a(t)
f(t, x), fx(t, x) = a(t), fxx(t, x) = 0.

Using Itô formula we have

dXt = d[f(t, Yt)] = ft(t, Yt) dt+ fx(t, Yt) dYt +
1

2
fxx(t, Yt) d[Y ]t

=
a′(t)

a(t)
f(t, Yt) dt+ a(t) dYt + 0 =

a′(t)

a(t)
Xt dt+ a(t) b(t) dBt.

So, for X to be a solution to the SDE

dXt = −αXt dt+ σ dBt

it suffices to take

a′(t)

a(t)
= −α, i.e., a(t) = c e−α t, for some constant c, and a(t) b(t) = σ.

To satisfy the initial condition X0 = x0 we need

x0 = f(0, Y0) = a(0)x0 ⇐ a(0) = 1 ⇔ c = 1.

Hence we consider a(t) = e−α t and b(t) = σ/a(t) = σ eα t.

Note that with this choice of a(·) and b(·), both (i) and (ii) are satisfied. In fact, Y is a L2-
martingale, because it is a stochastic integral w.r.t. the Brownian motion where the integrand
satisfies ∫ t

0

b(s)2 ds =

∫ t

0

σ2 eα s ds =
σ2

α

(
eα t − 1

)
<∞, ∀ t.

Hence a solution to the SDE is given by

Xt = a(t)

{
x0 +

∫ t

0

b(s) dBs

}
= x0 e

−α t + σ

∫ t

0

e−α (t−s) dBs.

From the unqueness of solution it follows that this is the only/unique solution.

b. We now consider the process

Yt = exp
{
Xt −

η

α

}
= g(Xt), say, where g(x) = ex−η/α.

Clearly g ∈ C2(R), with g′ = g′′ = g. Using Itô formula we have

dYt = d[g(Xt)] = g′(Xt) dXt +
1

2
g′′(Xt) d[X]t = Yt [−αXt dt+ σ dBt] +

1

2
Yt d[X]t.

From the given SDE it follows that Xt satisfies

Xt = x0 − α
∫ t

0

Xs ds+ σBt.
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Since the second term in the above expression is of finite variation (a.s.), the quadratic vari-
ation of X is given by [X]t = σ2 [B]t = σ2 t. We then get the SDE satisfied by Yt:

dYt = −αYtXt dt+ σ Yt dBt +
1

2
Yt σ

2 dt

= Yt

[
−αXt +

1

2
σ2

]
dt+ σ Yt dBt

= Yt

[
−α

(
lnYt +

η

α

)
+

1

2
σ2

]
dt+ σ Yt dBt

= Yt

(
1

2
σ2 − η − α lnYt

)
dt+ σ Yt dBt, t > 0

with Y0 = ex0−η/α.

c. Now consider the SDE satisfied by a geometric mean reverting process:

drt = rt (θ − α ln rt) dt+ σ rt dBt, t > 0

with r0 = 1.

Comparing this with the SDE in (b), satisfied by Yt, we realize that it suffices to take

1

2
σ2 − η = θ, i.e., η =

1

2
σ2 − θ, and x0 =

η

α
=
σ2/2− θ

α
.

Hence from (a) and (b) it follows that the required solution is given by

rt = exp

{
r̃t −

σ2/2− θ
α

}
where

r̃t =
σ2/2− θ

α
e−α t + σ

∫ t

0

e−α (t−s) dBs.
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5. [Soln]
Note that formally we can rewrite Xt under P as follows.

Xt = x+

∫ t

0

µs ds+

∫ t

0

σs dBs

= x+

∫ t

0

νs ds+

∫ t

0

(µs − νs) ds+

∫ t

0

σs dBs

= x+

∫ t

0

νs ds+

∫ t

0

σs

[
dBs +

µs − νs
σs

ds

]
Hence by defining

B̃t = Bt +

∫ t

0

µs − νs
σs

ds = Bt −
∫ t

0

Hs ds with Ht =
νt − µt
σt

,

we have

(?) Xt = x+

∫ t

0

νs ds+

∫ t

0

σs dB̃s a.s. [P].

To obtain a new measure Q, under which B̃ is a Brownian motion, we are going to apply Girsanov
theorem. Now assume that σt 6= 0 ∀ t ∈ R+, so that Ht = νt−µt

σt
is well defined. Clearly, H is an

adpated process. To apply Girsanov theorem we need furthermmore

(†)
∫ T

0

H2
s ds <∞ a.s. [P],

and ZT ≡ ZT (H) to be a P-martingale, where

Zt = exp

{
−
∫ t

0

Hs dBs −
1

2

∫ t

0

H2
s ds

}
.

The martingale condition is satisfied if, for example, (νt), (µt) and (σt) are deterministic/non-
random processes satisfying σt 6= 0 and (†).
In this case, B̃ is a BM under Q, which is defined as dQ = ZT dP. Since ZT > 0, it follows that
Q ≡ P, i.e., the null sets of both the measures are the same. From (?) it then follows that

Xt = x+

∫ t

0

νs ds+

∫ t

0

σs dB̃s a.s. [Q]

where B̃ is a Q-BM.
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