Solution to Exam 30-05-2016, Stochastic Differential Equations (Mastermath)

1. [Soln]

a. Let (7,)n>0 be a localizing sequence for the local martingale M, i.e. for all s,t € Ry,s <t
we have

B(Mz, nt|Fs) = M, ps- (1)

Since sup,~q |Ms| € L', we have that for all n,t, |M,, r¢| < supgsq|Ms| is bounded by an
integrable random variable. By dominated convergence we can pull the limit in (1) out and
get the result. [Now taking the limit as n — oo in (1) the result follows from the dominated
convergence theorem.]

b. For the definition see the book.
Now call A, = {|E(X|G)| > k}. We have to show that given € > 0, 3 K such that

sup E(Ly, [E(X[G))) < ¢ Vk > K.
GCF

Since X € L', we have that for a given € > 0 there is a § > 0 such that if P(A) < § we have
E(]X|14) < e. Choose K large enough such that K > E(|X|)/d. By Chebyshev’s and Jensen
inequality for k > K

P(4)) < TE(B(XIG)) < 7E(X]) <6

T =

Since Ay, € G the result follows from
E([E(X|9)[14,) < E(E(|X[|G)1a,) = E(|X|14,) <€

c. i) From It6-isometry

(H o (K o M);) = /Ot H.d (/OsKudMu>

= /t Hs(stMs - KOdMO) = ((HK) .M)t
0

ii) Pick N = fo H,dMs;, then

. . t . t
</ HSdMS,/ Hdes> :/ Hsd<M,/ HudMu> :/ H2d(M),.
0 0 t 0 0 s 0



2. [Soln]
First note that, for all ¢ > 0,

/t(sin(Hs))2 ds <t and /t(cos(HS))2 ds < t.
0 0

Hence the stochastic integrals w.r.t. BM with sin(H;) and cos(Hy) as integrands, i.e.,

t t
/ cos(H,) dXs, / sin(H;) dYs, / sin(H and / cos(Hy) dYs
0 0

are all local martingales. In fact, they are all L?-martingales. Also, clearly they are continuous.

Hence
B; = / cos(Hs) dX / sin(H
Bt = / sin(Hy) dX / cos(H,

are also continuous local martingales.

From Levy characterization theorem, it will follow that continuous local martingales B and B are
two independent Brownian motions, if we show that the quadratic variation processes are given by

(B)y = (B)y =t, (B,B), =0.

But, since X and Y are independent Brownian motions, we have

) ) ) )
</ cos(Hy) dXS> + </ sin(HS)dYs> + </ cos(Hs) dXs, sin(HS)dYs>
0 . 0 . 0 0

/0 (cos(H,))2 d(X)s + /O (sin(H)2 d(Y), + /0 cos(H) sin(Hy) d(X , Y).

t
/ds
0

(B)t

t

_ /t(cos(Hs))z ds + /t(sm(m))2 ds + 0
0 0

= .

Similarly, we can show that (B} = t. Finally,
(B, B), — /0 cos(HL) sin(Hy) d(X)s — /0 (cos(HL))2 d(X , V),
+/O (sin(H,))?d(Y , X) /0 sin(Hy) cos(Hg) d(Y )

t

= cos(Hy) sin(H;)ds —0+0 — / sin(H;) cos(Hs) ds
0 0

— 0.

Hence the proof is complete.



3. [Soln]

a.) X is continuous and starts at a point xg € (a,b) hence the exit time of this interval can be
determined by T, A Tp.

b.) We can use It6’s formula to show that f(X;) and f(X;ar) are semimartingales. Note since

(X), = < +[ o(Xu>dBu>s — [ i

the decompositions are equal to

FO0) = flan) + [ FOC)0(X)aB + 5 [ 17(X)0 (X, )ds

resp. analogous for f(Xiar) which is a combination of a local martingale and stochastic
integral w.r.t. the Lebesgue measure.

c.) First we show that for all t > 0, (M); € L' by upper bounding

< /0 " f’(XS)a(XS)dBS> < /0 sup (F)2(Xu)o?(Xa)du < Ct

0<u<T

where the last inequality follows from the fact that o is continuous and f € C2. Since M is
a martingale, via Doob’s decomposition we get that (M7 — (M);)¢> is also a martingale and
E(M?) =E((M);) < oo, hence M € L2

d.) Direct consequence.
e.) Trivial.

f.) Follows from
1 tAT 1 tAT
E(h(Xenr)) = h(zo) + B (/0 h"(Xs)UQ(Xs)dé’) = h(zo) + S </0 1d5> :

g.) Tt is trivial to show that t AT € L' and since t AT — T almost surely, we have by monotone
convergence that T € L?

h.) Trivial.
i.) From (d) we get
AT
E(w(Xinr)) = w(zo) + %E (/0 w"(Xs)U2(Xs)d8> = w(wo) + %E(t AT)

b—-xo
b—a

D B(h(Xinr)) —

we can take the limit ¢ — oo and get

E(w(Xr)) = E(h(Xiar)) + bb__mao B bb__xao

We use that w(Xr) = h(X7) + bgff and solve the above equation
ELXT)::I@

The claim follows from E(X7) = aP(X1 = a) + 0P(X7r =b) and P( X7 = a) +P(X7 =b) = 1.



4. [Soln]

a. We are going to consider solutions of the form
t
X; = al(t) {xo —|—/ b(s) dBS} )
0
Let

(i) Y2 =0+ fot b(s)dBs be a local martingale and
(ii) f(t,z):=a(t)z € CL3(R; x R).
Note that X; = f(¢,Y;) and

) =d@e =" fe0), L) = alt), fealti) =0,
a(t)
Using It6 formula we have
AXe = Y] = St V) ot V) Vi + (Y AV,
= ‘;((f)) Ft.Ys) dt +a(t)dY; +0 = 0;((;)) X, dt + a(t) b(t) dB,.

So, for X to be a solution to the SDE
dXt = —O[Xt dt + O'dBt

it suffices to take

= —q, ie., a(t) = ce !, for some constant ¢, and a(t)b(t) = o.

To satisfy the initial condition Xy = g we need
zo=f(0,Yo) =a(0)zy < a(0)=1 & c=1.

Hence we consider a(t) = e~ " and b(t) =o/a(t) = oe*t.

Note that with this choice of a(-) and b(-), both (i) and (ii) are satisfied. In fact, Y is a L2-
martingale, because it is a stochastic integral w.r.t. the Brownian motion where the integrand
satisfies

t t 2
/ b(s)st:/ o2e®sds = = (e*'=1) < oo, Vit
0 0 a

Hence a solution to the SDE is given by

¢ ¢
X = al(t) {zg Jr/ b(s) st} =xpe “t+o / e~ (=) 4B
0 0

From the unqueness of solution it follows that this is the only/unique solution.

b. We now consider the process
Y; = exp {Xt — g} = g(X,), say, where g(z) =",
Clearly g € C?*(R), with ¢’ = ¢" = g. Using It6 formula we have
4%, = dlg(X0)] = (X)) dX,+ 5 9" (X0)d[X), = Yi [0 X di + 0 dBi] + 5 Vi d[X].
From the given SDE it follows that X, satisfies

t
Xt:xo—a/ X,ds + oB;.
0



Since the second term in the above expression is of finite variation (a.s.), the quadratic vari-
ation of X is given by [X]; = 0% [B]; = 0?t. We then get the SDE satisfied by Y;:

1
dY; = —aYtXtdt—&-aYtdBt—i—thant

1
= Y, {—aXt—i—QJQ} dt + oY; dB;

1
= Y {—a <lnYt—|—ﬁ> +202} dt + o Y; dBy
e

1
— }Q(ngnozlan) dt +oYidB, t>0

with Yy = e¥o—1/e,

. Now consider the SDE satisfied by a geometric mean reverting process:
dri=r(0—alnr)dt+or,dB;, t>0

with ro = 1.
Comparing this with the SDE in (b), satisfied by Y;, we realize that it suffices to take
L

—o?—n=40, ie, n==0>—-0

7 702/2—9
2 2 ’ B '

(67

and 9=

Q|

Hence from (a) and (b) it follows that the required solution is given by

{~ 02/2—0}
T+ = exp Tt—ia

2
2 —
ft:70-/ 9

where

t
et 4o / et 4B,
«Q 0



5. [Soln]
Note that formally we can rewrite X; under P as follows.

t t
x—|—/,u3ds+/asst
0 0
t t t
= m—i—/ Vsds+/(us—vs)ds+/ o5 dB,
0 0 0

t t .
= x—|—/usds—|—/as |:dBS—|—Md8:|
0 0 Os

Xy

Hence by defining

t o t o
Bt:BtJr/ e Vsds:Bt—/ H,ds with H, = 22— #Ht
0 0

Os Ot

we have . .
(%) Xi=x+ / vsds + / o,dB, as. [P].
0 0

To obtain a new measure Q, under which B is a Brownian motion, we are going to apply Girsanov
theorem. Now assume that o # 0 Vit € Ry, so that H; = “=—£t ig well defined. Clearly, H is an

ag
adpated process. To apply Girsanov theorem we need furthermmore

T
) /Oszs<oo a.s. [P,

and Zr = Zp(H) to be a P-martingale, where

t 1 t
Z; =exps— | HydB;,— = | H?ds?.
2 S
0 0

The martingale condition is satisfied if, for example, (1), (u:) and (o) are deterministic/non-
random processes satisfying o; # 0 and ().

In this case, B is a BM under Q, which is defined as dQ = Zz dP. Since Zp > 0, it follows that
Q =P, i.e., the null sets of both the measures are the same. From (x) it then follows that

t t
X, =uz+ / veds + / osdBs  a.s. Q]
0 0

where B is a Q-BM.



