1. [Soln]

a. Let $\left(\tau_{n}\right)_{n \geq 0}$ be a localizing sequence for the local martingale M, i.e. for all $s, t \in \mathbb{R}_{+}, s<t$ we have

$$
\begin{equation*}
\mathbb{E}\left(M_{\tau_{n} \wedge t} \mid \mathcal{F}_{s}\right)=M_{\tau_{n} \wedge s} . \tag{1}
\end{equation*}
$$

Since $\sup _{s \geq 0}\left|M_{s}\right| \in L^{1}$, we have that for all $n, t,\left|M_{\tau_{n} \wedge t}\right| \leq \sup _{s>0}\left|M_{s}\right|$ is bounded by an integrable random variable. By dominated convergence we can pull the limit in (1) out and get the result. [Now taking the limit as $n \rightarrow \infty$ in (1) the result follows from the dominated convergence theorem.]
b. For the definition see the book.

Now call $A_{k}=\{|\mathbb{E}(X \mid \mathcal{G})|>k\}$. We have to show that given $\epsilon>0, \exists K$ such that

$$
\sup _{\mathcal{G} \subset \mathcal{F}} \mathbb{E}\left(1_{A_{k}}|\mathbb{E}(X \mid \mathcal{G})|\right)<\epsilon \quad \forall k \geq K
$$

Since $X \in L^{1}$, we have that for a given $\epsilon>0$ there is a $\delta>0$ such that if $\mathbb{P}(A) \leq \delta$ we have $\mathbb{E}\left(|X| 1_{A}\right) \leq \epsilon$. Choose K large enough such that $K \geq \mathbb{E}(|X|) / \delta$. By Chebyshev's and Jensen inequality for $k \geq K$

$$
\mathbb{P}\left(A_{k}\right) \leq \frac{1}{k} \mathbb{E}(|\mathbb{E}(X \mid \mathcal{G})|) \leq \frac{1}{k} \mathbb{E}(|X|) \leq \delta
$$

Since $A_{k} \in \mathcal{G}$ the result follows from

$$
\mathbb{E}\left(|\mathbb{E}(X \mid \mathcal{G})| 1_{A_{k}}\right) \leq \mathbb{E}\left(\mathbb{E}(|X| \mid \mathcal{G}) 1_{A_{k}}\right)=\mathbb{E}\left(|X| 1_{A_{k}}\right) \leq \epsilon
$$

c. i) From Itô-isometry

$$
\begin{aligned}
\left(H \bullet(K \bullet M)_{t}\right) & =\int_{0}^{t} H_{s} d\left(\int_{0}^{s} K_{u} d M_{u}\right) \\
& =\int_{0}^{t} H_{s}\left(K_{s} d M_{s}-K_{0} d M_{0}\right)=((H K) \bullet M)_{t}
\end{aligned}
$$

ii) Pick $N=\int_{0} H_{s} d M_{s}$, then

$$
\left\langle\int_{0}^{\cdot} H_{s} d M_{s}, \int_{0}^{\cdot} H_{s} d M_{s}\right\rangle_{t}=\int_{0}^{t} H_{s} d\left\langle M, \int_{0}^{\cdot} H_{u} d M_{u}\right\rangle_{s}=\int_{0}^{t} H_{s}^{2} d\langle M\rangle_{s}
$$

2. [Soln]

First note that, for all $t \geq 0$,

$$
\int_{0}^{t}\left(\sin \left(H_{s}\right)\right)^{2} d s \leq t \quad \text { and } \quad \int_{0}^{t}\left(\cos \left(H_{s}\right)\right)^{2} d s \leq t
$$

Hence the stochastic integrals w.r.t. BM with $\sin \left(H_{s}\right)$ and $\cos \left(H_{s}\right)$ as integrands, i.e.,

$$
\int_{0}^{t} \cos \left(H_{s}\right) d X_{s}, \quad \int_{0}^{t} \sin \left(H_{s}\right) d Y_{s}, \quad \int_{0}^{t} \sin \left(H_{s}\right) d X_{s} \quad \text { and } \quad \int_{0}^{t} \cos \left(H_{s}\right) d Y_{s}
$$

are all local martingales. In fact, they are all L^{2}-martingales. Also, clearly they are continuous. Hence

$$
\begin{aligned}
& B_{t}=\int_{0}^{t} \cos \left(H_{s}\right) d X_{s}+\int_{0}^{t} \sin \left(H_{s}\right) d Y_{s} \\
& \hat{B}_{t}=\int_{0}^{t} \sin \left(H_{s}\right) d X_{s}-\int_{0}^{t} \cos \left(H_{s}\right) d Y_{s}
\end{aligned}
$$

are also continuous local martingales.
From Levy characterization theorem, it will follow that continuous local martingales B and \hat{B} are two independent Brownian motions, if we show that the quadratic variation processes are given by

$$
\langle B\rangle_{t}=\langle\hat{B}\rangle_{t}=t, \quad\langle B, \hat{B}\rangle_{t}=0
$$

But, since X and Y are independent Brownian motions, we have

$$
\begin{aligned}
\langle B\rangle_{t} & =\left\langle\int_{0}^{(\cdot)} \cos \left(H_{s}\right) d X_{s}\right\rangle_{t}+\left\langle\int_{0}^{(\cdot)} \sin \left(H_{s}\right) d Y_{s}\right\rangle_{t}+\left\langle\int_{0}^{(\cdot)} \cos \left(H_{s}\right) d X_{s}, \int_{0}^{(\cdot)} \sin \left(H_{s}\right) d Y_{s}\right\rangle_{t} \\
& =\int_{0}^{t}\left(\cos \left(H_{s}\right)\right)^{2} d\langle X\rangle_{s}+\int_{0}^{t}\left(\sin \left(H_{s}\right)\right)^{2} d\langle Y\rangle_{s}+\int_{0}^{t} \cos \left(H_{s}\right) \sin \left(H_{s}\right) d\langle X, Y\rangle_{s} \\
& =\int_{0}^{t}\left(\cos \left(H_{s}\right)\right)^{2} d s+\int_{0}^{t}\left(\sin \left(H_{s}\right)\right)^{2} d s+0=\int_{0}^{t} d s \\
& =t .
\end{aligned}
$$

Similarly, we can show that $\langle\hat{B}\rangle_{t}=t$. Finally,

$$
\begin{aligned}
\langle B, \hat{B}\rangle_{t}= & \int_{0}^{t} \cos \left(H_{s}\right) \sin \left(H_{s}\right) d\langle X\rangle_{s}-\int_{0}^{t}\left(\cos \left(H_{s}\right)\right)^{2} d\langle X, Y\rangle_{s} \\
& +\int_{0}^{t}\left(\sin \left(H_{s}\right)\right)^{2} d\langle Y, X\rangle_{s}-\int_{0}^{t} \sin \left(H_{s}\right) \cos \left(H_{s}\right) d\langle Y\rangle_{s} \\
= & \int_{0}^{t} \cos \left(H_{s}\right) \sin \left(H_{s}\right) d s-0+0-\int_{0}^{t} \sin \left(H_{s}\right) \cos \left(H_{s}\right) d s \\
= & 0
\end{aligned}
$$

Hence the proof is complete

3. [Soln]

a.) X is continuous and starts at a point $x_{0} \in(a, b)$ hence the exit time of this interval can be determined by $T_{a} \wedge T_{b}$.
b.) We can use Itô's formula to show that $f\left(X_{t}\right)$ and $f\left(X_{t \wedge T}\right)$ are semimartingales. Note since

$$
\langle X\rangle_{s}=\left\langle x_{0}+\int_{0} \sigma\left(X_{u}\right) d B_{u}\right\rangle_{s}=\int_{0}^{s} \sigma^{2}\left(X_{u}\right) d u
$$

the decompositions are equal to

$$
f\left(X_{t}\right)=f\left(x_{0}\right)+\int_{0}^{t} f^{\prime}\left(X_{s}\right) \sigma\left(X_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) \sigma^{2}\left(X_{s}\right) d s
$$

resp. analogous for $f\left(X_{t \wedge T}\right)$ which is a combination of a local martingale and stochastic integral w.r.t. the Lebesgue measure.
c.) First we show that for all $t>0,\langle M\rangle_{t} \in L^{1}$ by upper bounding

$$
\left\langle\int_{0}^{\cdot \wedge T} f^{\prime}\left(X_{s}\right) \sigma\left(X_{s}\right) d B_{s}\right\rangle_{t} \leq \int_{0}^{t} \sup _{0 \leq u \leq T}\left(f^{\prime}\right)^{2}\left(X_{u}\right) \sigma^{2}\left(X_{u}\right) d u \leq C t
$$

where the last inequality follows from the fact that σ is continuous and $f \in C^{2}$. Since M is a martingale, via Doob's decomposition we get that $\left(M_{t}^{2}-\langle M\rangle_{t}\right)_{t \geq 0}$ is also a martingale and $\mathbb{E}\left(M_{t}^{2}\right)=\mathbb{E}\left(\langle M\rangle_{t}\right)<\infty$, hence $M \in L^{2}$.
d.) Direct consequence.
e.) Trivial.
f.) Follows from

$$
\mathbb{E}\left(h\left(X_{t \wedge T}\right)\right)=h\left(x_{0}\right)+\frac{1}{2} \mathbb{E}\left(\int_{0}^{t \wedge T} h^{\prime \prime}\left(X_{s}\right) \sigma^{2}\left(X_{s}\right) d s\right)=h\left(x_{0}\right)+\frac{1}{2} \mathbb{E}\left(\int_{0}^{t \wedge T} 1 d s\right) .
$$

g.) It is trivial to show that $t \wedge T \in L^{1}$ and since $t \wedge T \rightarrow T$ almost surely, we have by monotone convergence that $T \in L^{2}$
h.) Trivial.
i.) From (d) we get

$$
\begin{aligned}
\mathbb{E}\left(w\left(X_{t \wedge T}\right)\right) & =w\left(x_{0}\right)+\frac{1}{2} \mathbb{E}\left(\int_{0}^{t \wedge T} w^{\prime \prime}\left(X_{s}\right) \sigma^{2}\left(X_{s}\right) d s\right)=w\left(x_{0}\right)+\frac{1}{2} \mathbb{E}(t \wedge T) \\
& \stackrel{(f)}{=} \mathbb{E}\left(h\left(X_{t \wedge T}\right)\right)-\frac{b-x_{0}}{b-a}
\end{aligned}
$$

we can take the limit $t \rightarrow \infty$ and get

$$
\mathbb{E}\left(w\left(X_{T}\right)\right)=\mathbb{E}\left(h\left(X_{t \wedge T}\right)\right)+\frac{b-x_{0}}{b-a}=\frac{b-x_{0}}{b-a}
$$

We use that $w\left(X_{T}\right)=h\left(X_{T}\right)+\frac{b-X_{T}}{b-a}$ and solve the above equation

$$
\mathbb{E}\left(X_{T}\right)=x_{0}
$$

The claim follows from $\mathbb{E}\left(X_{T}\right)=a \mathbb{P}\left(X_{T}=a\right)+b \mathbb{P}\left(X_{T}=b\right)$ and $\mathbb{P}\left(X_{T}=a\right)+\mathbb{P}\left(X_{T}=b\right)=1$.

4. [Soln]

a. We are going to consider solutions of the form

$$
X_{t}=a(t)\left\{x_{0}+\int_{0}^{t} b(s) d B_{s}\right\} .
$$

Let
(i) $Y_{t}=x_{0}+\int_{0}^{t} b(s) d B_{s}$ be a local martingale and
(ii) $f(t, x):=a(t) x \in C^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$.

Note that $X_{t}=f\left(t, Y_{t}\right)$ and

$$
f_{t}(t, x)=a^{\prime}(t) x=\frac{a^{\prime}(t)}{a(t)} f(t, x), \quad f_{x}(t, x)=a(t), \quad f_{x x}(t, x)=0 .
$$

Using Itô formula we have

$$
\begin{aligned}
d X_{t} & =d\left[f\left(t, Y_{t}\right)\right]=f_{t}\left(t, Y_{t}\right) d t+f_{x}\left(t, Y_{t}\right) d Y_{t}+\frac{1}{2} f_{x x}\left(t, Y_{t}\right) d[Y]_{t} \\
& =\frac{a^{\prime}(t)}{a(t)} f\left(t, Y_{t}\right) d t+a(t) d Y_{t}+0=\frac{a^{\prime}(t)}{a(t)} X_{t} d t+a(t) b(t) d B_{t}
\end{aligned}
$$

So, for X to be a solution to the SDE

$$
d X_{t}=-\alpha X_{t} d t+\sigma d B_{t}
$$

it suffices to take

$$
\frac{a^{\prime}(t)}{a(t)}=-\alpha, \text { i.e., } a(t)=c e^{-\alpha t}, \text { for some constant } c, \quad \text { and } \quad a(t) b(t)=\sigma
$$

To satisfy the initial condition $X_{0}=x_{0}$ we need

$$
x_{0}=f\left(0, Y_{0}\right)=a(0) x_{0} \Leftrightarrow a(0)=1 \quad \Leftrightarrow \quad c=1 .
$$

Hence we consider $a(t)=e^{-\alpha t}$ and $b(t)=\sigma / a(t)=\sigma e^{\alpha t}$.
Note that with this choice of $a(\cdot)$ and $b(\cdot)$, both (i) and (ii) are satisfied. In fact, Y is a L^{2} martingale, because it is a stochastic integral w.r.t. the Brownian motion where the integrand satisfies

$$
\int_{0}^{t} b(s)^{2} d s=\int_{0}^{t} \sigma^{2} e^{\alpha s} d s=\frac{\sigma^{2}}{\alpha}\left(e^{\alpha t}-1\right)<\infty, \quad \forall t
$$

Hence a solution to the SDE is given by

$$
X_{t}=a(t)\left\{x_{0}+\int_{0}^{t} b(s) d B_{s}\right\}=x_{0} e^{-\alpha t}+\sigma \int_{0}^{t} e^{-\alpha(t-s)} d B_{s}
$$

From the unqueness of solution it follows that this is the only/unique solution.
b. We now consider the process

$$
Y_{t}=\exp \left\{X_{t}-\frac{\eta}{\alpha}\right\}=g\left(X_{t}\right), \text { say, } \quad \text { where } g(x)=e^{x-\eta / \alpha} .
$$

Clearly $g \in C^{2}(\mathbb{R})$, with $g^{\prime}=g^{\prime \prime}=g$. Using Itô formula we have

$$
d Y_{t}=d\left[g\left(X_{t}\right)\right]=g^{\prime}\left(X_{t}\right) d X_{t}+\frac{1}{2} g^{\prime \prime}\left(X_{t}\right) d[X]_{t}=Y_{t}\left[-\alpha X_{t} d t+\sigma d B_{t}\right]+\frac{1}{2} Y_{t} d[X]_{t}
$$

From the given SDE it follows that X_{t} satisfies

$$
X_{t}=x_{0}-\alpha \int_{0}^{t} X_{s} d s+\sigma B_{t}
$$

Since the second term in the above expression is of finite variation (a.s.), the quadratic variation of X is given by $[X]_{t}=\sigma^{2}[B]_{t}=\sigma^{2} t$. We then get the SDE satisfied by Y_{t} :

$$
\begin{aligned}
d Y_{t} & =-\alpha Y_{t} X_{t} d t+\sigma Y_{t} d B_{t}+\frac{1}{2} Y_{t} \sigma^{2} d t \\
& =Y_{t}\left[-\alpha X_{t}+\frac{1}{2} \sigma^{2}\right] d t+\sigma Y_{t} d B_{t} \\
& =Y_{t}\left[-\alpha\left(\ln Y_{t}+\frac{\eta}{\alpha}\right)+\frac{1}{2} \sigma^{2}\right] d t+\sigma Y_{t} d B_{t} \\
& =Y_{t}\left(\frac{1}{2} \sigma^{2}-\eta-\alpha \ln Y_{t}\right) d t+\sigma Y_{t} d B_{t}, \quad t>0
\end{aligned}
$$

with $Y_{0}=e^{x_{0}-\eta / \alpha}$.
c. Now consider the SDE satisfied by a geometric mean reverting process:

$$
d r_{t}=r_{t}\left(\theta-\alpha \ln r_{t}\right) d t+\sigma r_{t} d B_{t}, \quad t>0
$$

with $r_{0}=1$.
Comparing this with the SDE in (b), satisfied by Y_{t}, we realize that it suffices to take

$$
\frac{1}{2} \sigma^{2}-\eta=\theta, \quad \text { i.e., } \eta=\frac{1}{2} \sigma^{2}-\theta, \quad \text { and } \quad x_{0}=\frac{\eta}{\alpha}=\frac{\sigma^{2} / 2-\theta}{\alpha}
$$

Hence from (a) and (b) it follows that the required solution is given by

$$
r_{t}=\exp \left\{\tilde{r}_{t}-\frac{\sigma^{2} / 2-\theta}{\alpha}\right\}
$$

where

$$
\tilde{r}_{t}=\frac{\sigma^{2} / 2-\theta}{\alpha} e^{-\alpha t}+\sigma \int_{0}^{t} e^{-\alpha(t-s)} d B_{s} .
$$

5. [Soln]

Note that formally we can rewrite X_{t} under \mathbb{P} as follows.

$$
\begin{aligned}
X_{t} & =x+\int_{0}^{t} \mu_{s} d s+\int_{0}^{t} \sigma_{s} d B_{s} \\
& =x+\int_{0}^{t} \nu_{s} d s+\int_{0}^{t}\left(\mu_{s}-\nu_{s}\right) d s+\int_{0}^{t} \sigma_{s} d B_{s} \\
& =x+\int_{0}^{t} \nu_{s} d s+\int_{0}^{t} \sigma_{s}\left[d B_{s}+\frac{\mu_{s}-\nu_{s}}{\sigma_{s}} d s\right]
\end{aligned}
$$

Hence by defining

$$
\tilde{B}_{t}=B_{t}+\int_{0}^{t} \frac{\mu_{s}-\nu_{s}}{\sigma_{s}} d s=B_{t}-\int_{0}^{t} H_{s} d s \quad \text { with } \quad H_{t}=\frac{\nu_{t}-\mu_{t}}{\sigma_{t}}
$$

we have

$$
(\star) \quad X_{t}=x+\int_{0}^{t} \nu_{s} d s+\int_{0}^{t} \sigma_{s} d \tilde{B}_{s} \quad \text { a.s. } \quad[\mathbb{P}] .
$$

To obtain a new measure \mathbb{Q}, under which \tilde{B} is a Brownian motion, we are going to apply Girsanov theorem. Now assume that $\sigma_{t} \neq 0 \forall t \in \mathbb{R}_{+}$, so that $H_{t}=\frac{\nu_{t}-\mu_{t}}{\sigma_{t}}$ is well defined. Clearly, H is an adpated process. To apply Girsanov theorem we need furthermmore

$$
\int_{0}^{T} H_{s}^{2} d s<\infty \quad \text { a.s. } \quad[\mathbb{P}]
$$

and $Z_{T} \equiv Z_{T}(H)$ to be a \mathbb{P}-martingale, where

$$
Z_{t}=\exp \left\{-\int_{0}^{t} H_{s} d B_{s}-\frac{1}{2} \int_{0}^{t} H_{s}^{2} d s\right\} .
$$

The martingale condition is satisfied if, for example, $\left(\nu_{t}\right),\left(\mu_{t}\right)$ and $\left(\sigma_{t}\right)$ are deterministic/nonrandom processes satisfying $\sigma_{t} \neq 0$ and (\dagger).
In this case, \tilde{B} is a BM under \mathbb{Q}, which is defined as $d \mathbb{Q}=Z_{T} d \mathbb{P}$. Since $Z_{T}>0$, it follows that $\mathbb{Q} \equiv \mathbb{P}$, i.e., the null sets of both the measures are the same. From (\star) it then follows that

$$
X_{t}=x+\int_{0}^{t} \nu_{s} d s+\int_{0}^{t} \sigma_{s} d \tilde{B}_{s} \quad \text { a.s. } \quad[\mathbb{Q}]
$$

where \tilde{B} is a \mathbb{Q}-BM.

