Exam Stochastic Differential Equations (3TU)

Solutions

June 15, 2009

1. (a) $r+\sum_{i=1}^{n} X_{i}$ is the total number of red balls after the nth drawing. The total number of balls in the urn after n drawings is $b+r+n$. So the fraction of red balls in the urn after the nth drawing is given by $Z_{n}=\left(r+\sum_{i=1}^{n} X_{i}\right) /(b+r+n)$.
(b) From (a) we have that $Z_{n}=f_{n}\left(X_{1}, \ldots, X_{n}\right)$ where $f_{n}\left(x_{1}, \ldots, x_{n}\right)=(r+$ $\left.\sum_{i=1}^{n} x_{i}\right) /(b+r+n)$. The expectation of Z_{n} is finite since $\left|Z_{n}\right| \leq 1$.

$$
\begin{aligned}
E\left(Z_{n} \mid X_{1}, \ldots, X_{n-1}\right)= & E\left(\left.\frac{r+\sum_{i=1}^{n} X_{i}}{r+b+n} \right\rvert\, X_{1}, \ldots, X_{n-1}\right) \\
& =\frac{r+\sum_{i=1}^{n-1} X_{i}}{r+b+n}+\frac{1}{r+b+n} E\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
\end{aligned}
$$

Now

$$
\frac{r+\sum_{i=1}^{n-1} X_{i}}{r+b+n}=\left(1-\frac{1}{r+b+n}\right) Z_{n-1}
$$

and

$$
E\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)=Z_{n-1}
$$

so

$$
E\left(Z_{n} \mid X_{1}, \ldots, X_{n-1}\right)=Z_{n-1}
$$

(c) It follows from $\left|Z_{n}\right| \leq 1$ that $E\left(\left|Z_{n}\right|\right) \leq 1<\infty$. So the statement follows from the Bounded Martingale Convergence Theorem.
(d) The sequence Z_{n} is uniformly integrable since $\left|Z_{n}\right| \leq 1$, so Z_{n} converges in L^{1} to Z_{∞}. In particular, $\lim E\left[Z_{n}\right]=E\left[Z_{\infty}\right]$. It follows from (a) that $\sum_{i=1}^{n} X_{i}=$ $(r+b+n) Z_{n}-r$, so

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right]=\lim _{n \rightarrow \infty}\left(\frac{r+b}{n}+1\right) E\left[Z_{n}\right]-\frac{r}{n}=E\left[Z_{\infty}\right]
$$

2. (a) Since B_{t} is a martingale, we can apply Doob's Continuous-Time Stopping Theorem to conclude that $B_{t \wedge \tau}$ is a martingale. $\left|B_{t \wedge \tau}\right| \leq A+B$.
(b) Since $P(\tau<\infty)=1$, we have $B_{\tau}=\lim _{t \rightarrow \infty} B_{t \wedge \tau}$. It follows from (b) that $E\left(B_{t \wedge \tau}\right)=0$ and that we can apply the DCT to conclude that

$$
E\left[B_{\tau}\right]=E\left[\lim _{t \rightarrow \infty} B_{t \wedge \tau}\right]=\lim _{t \rightarrow \infty} E\left[B_{t \wedge \tau}\right]=0
$$

Since B_{τ} can only take the values A and $-B$, we get $A P\left(B_{\tau}=A\right)-B\left(1-P\left(B_{\tau}=\right.\right.$ $A))=0$. So $P\left(B_{\tau}=A\right)=B ?(A+B)$ and $P\left(B_{\tau}=B\right)=1-P\left(B_{\tau}=A\right)=$ $A /(A+B)$.
(c) (i) M_{t} is \mathcal{F}_{t} measurable since it is a continuous function of B_{t}. (ii) M_{t} is integrable, since $E\left[\left|M_{t}\right|\right] \leq E\left[B_{t}^{2}\right]+t=2 t<\infty$. (iii) Let $s<t$. Using independent increments and properties of conditional expectations, we get

$$
\begin{aligned}
E\left[M_{t} \mid \mathcal{F}_{s}\right] & =E\left[\left(B_{t}-B_{s}\right)^{2}+2 B_{s}\left(B_{t}-B_{s}\right)+B_{s}^{2}-t \mid \mathcal{F}_{s}\right] \\
& =E\left[\left(B_{t}-B_{s}\right)^{2}\right]+2 B_{s} E\left[B_{t}-B_{s}\right]+B_{s}^{2}-t=t-s+B_{s}^{2}-t=M_{s}
\end{aligned}
$$

It follows from (i), (ii) and (iii) that M_{t} is a martingale.
(d) By Doob's Continuous-Time Stopping Theorem, $M_{t \wedge \tau}$ is a martingale and $\left|M_{t \wedge \tau}\right| \leq$ $A^{2}+B^{2}+\tau$. So $E\left[M_{t \wedge \tau}\right]=E\left[M_{0}\right]=0$. Since the upperbound $A^{2}+B^{2}+\tau$ is an integrable random variable it follows by the DCT that

$$
E\left[M_{\tau}\right]=E\left[\lim _{t \rightarrow \infty} M_{t \wedge \tau}\right]=\lim _{t \rightarrow \infty} E\left[M_{t \wedge \tau}\right]=0
$$

hence $E[\tau]=E\left[B_{\tau}^{2}\right]=A^{2} P\left(B_{\tau}=A\right)+B^{2} P\left(B_{\tau}=B\right)=\frac{A^{2} B}{A+B}+\frac{A B^{2}}{A+B}=A B$.
3. (a) $\mathrm{d} X_{t}=t \mathrm{~d} B_{t}$ and $\mathrm{d} Y_{t}=B_{t} \mathrm{~d} t$, so by Ito's product rule

$$
\mathrm{d} X_{t} Y_{t}=X_{t} \mathrm{~d} Y_{t}+Y_{t} \mathrm{~d} X_{t}=B_{t} X_{t} \mathrm{~d} t+t Y_{t} \mathrm{~d} B_{t}
$$

(b) Integrating the stochastic differential derived in (a) over $[0, t]$, we get

$$
X_{t} Y_{t}=\int_{0}^{t} B_{s} X_{s} \mathrm{~d} s+\int_{0}^{t} s Y_{s} \mathrm{~d} B_{s}
$$

Note that

$$
E\left[Y_{t}^{2}\right]=E\left[\int_{0}^{t} \int_{0}^{t} B_{u} B_{v} \mathrm{~d} u \mathrm{~d} v\right]=\int_{0}^{t} \int_{0}^{t} u \wedge v \mathrm{~d} u \mathrm{~d} u=\frac{1}{3} t^{3}
$$

So

$$
E \int_{0}^{T}\left(t Y_{t}\right)^{2} \mathrm{~d} t=\int_{0}^{T} \frac{1}{3} t^{5} \mathrm{~d} t=T^{6} / 18<\infty
$$

and the integrand $t Y_{t}$ is in \mathcal{H}^{2}. It follows that $E\left[\int_{0}^{t} s Y_{s} \mathrm{~d} B_{s}\right]=0$ and

$$
\operatorname{Cov}\left(X_{t}, Y_{t}\right)=E\left[X_{t} Y_{t}\right]=E\left[\int_{0}^{t} B_{s} X_{s} \mathrm{~d} s\right]
$$

So we have to calculate $E\left[B_{s} X_{s}\right]$.

$$
\mathrm{d} B_{t} X_{t}=X_{t} \mathrm{~d} B_{t}+B_{t} \mathrm{~d} X_{t}+\mathrm{d} B_{t} \mathrm{~d} X_{t}=\left(X_{t}+t B_{t}\right) \mathrm{d} B_{t}+t \mathrm{~d} t
$$

Integrating and taking expectations, we get $E\left[B_{s} X_{s}\right]=\int_{0}^{s} t \mathrm{~d} t=\frac{1}{2} s^{2}$. It follows that

$$
\operatorname{Cov}\left(X_{t}, Y_{t}\right)=\int_{0}^{t} E\left[B_{s} X_{s}\right] \mathrm{d} s=\int_{0}^{t} \frac{1}{2} s^{2} \mathrm{~d} s=\frac{1}{6} t^{3}
$$

4. (a) $\left(Z_{t}\right)$ satisfies the stochastic differential equation (SDE)

$$
\mathrm{d} Z_{t}=-a Z_{t} \mathrm{~d} t+\sigma \mathrm{d} B_{t}
$$

To solve the SDE , apply Itô's formula to $e^{a t} Z_{t}$

$$
\mathrm{d} e^{a t} Z_{t}=e^{a t} \mathrm{~d} Z_{t}+a e^{a t} Z_{t} \mathrm{~d}=\sigma e^{a t} \mathrm{~d} B_{t}
$$

Integrating over $[0, t]$ and substituting the initial condition $Z_{0}=y_{0}-\frac{\theta}{a}$ we get

$$
e^{a t} Z_{t}-\left(y_{0}-\frac{\theta}{a}\right)=\sigma \int_{0}^{t} e^{a s} \mathrm{~d} B_{s}
$$

It follows that

$$
Y_{t}=\frac{\theta}{a}+\left(y_{0}-\frac{\theta}{a}\right) e^{-a t}+\sigma \int_{0}^{t} e^{-a(t-s)} \mathrm{d} B_{s}
$$

(b) By an application of Itô's formula

$$
\mathrm{d} e^{Y_{t}}=e^{Y_{t}} \mathrm{~d} Y_{t}+\frac{1}{2} e^{Y_{t}}\left(\mathrm{~d} Y_{t}\right)^{2}=e^{Y_{t}}\left[\left(\theta-a Y_{t}\right)+\frac{1}{2} \sigma^{2}\right] \mathrm{d} t+\sigma e^{Y_{t}} \mathrm{~d} B_{t}
$$

It follows that $\left(X_{t}\right)$ is a solution of the SDE

$$
\mathrm{d} Z_{t}=Z_{t}\left[\frac{1}{2} \sigma^{2}+\left(\theta-a y_{0}\right) e^{-a t}-a \sigma \int_{0}^{t} e^{-a(t-s)} \mathrm{d} B_{s}\right] \mathrm{d} t+\sigma Z_{t} \mathrm{~d} B_{t}
$$

(c) By an application of Itô's formula

$$
\mathrm{d} \log r_{t}=\frac{1}{r_{t}} \mathrm{~d} r_{t}-\frac{1}{2} \frac{1}{r_{t}^{2}}\left(\mathrm{~d} r_{t}\right)^{2}=\left(\eta-\frac{1}{2} \sigma^{2}-a \log r_{t}\right) \mathrm{d} t+\sigma \mathrm{d} B_{t} .
$$

It follows from (a) that

$$
\log r_{t}-\log r_{0}=\frac{\eta-\frac{1}{2} \sigma^{2}}{a}+\left(y_{0}-\frac{\eta-\frac{1}{2} \sigma^{2}}{a}\right) e^{-a t}+\sigma \int_{0}^{t} e^{-a(t-s)} \mathrm{d} B_{s},
$$

and

$$
r_{t}=r_{0} \exp \left\{\frac{\eta-\frac{1}{2} \sigma^{2}}{a}+\left(y_{0}-\frac{\eta-\frac{1}{2} \sigma^{2}}{a}\right) e^{-a t}+\sigma \int_{0}^{t} e^{-a(t-s)} \mathrm{d} B_{s}\right\} .
$$

5. Note first that $Y_{t}=y_{0} e^{r t}$, so $\tilde{X}_{t}=y_{0}^{-1} e^{-r t} X_{t}$. Since

$$
\mathrm{d} e^{-r t} X_{t}=-r e^{-r t} X_{t} \mathrm{~d} t+e^{-r t} \mathrm{~d} X_{t}=e^{-r t} X_{t}\left[(\mu-r) \mathrm{d} t+\sigma \mathrm{d} B_{t}\right],
$$

we may conclude

$$
\mathrm{d} \tilde{X}_{t}=\sigma \tilde{X}_{t}\left[\frac{\mu-r}{\sigma} \mathrm{~d} t+\mathrm{d} B_{t}\right]=\sigma \tilde{X}_{t} \mathrm{~d} \tilde{B}_{t}
$$

where $\tilde{B}_{t}=B_{t}+\frac{\mu-r}{\sigma} t$. Let Q be the measure defined by

$$
Q(A)=E_{P}\left[\mathbf{1}_{A} \exp \left(-\frac{\mu-r}{\sigma} B_{T}-\left(\frac{\mu-r}{\sigma}\right)^{2} T / 2\right)\right] .
$$

It follows from Girsanov's Theorem that $\left(\tilde{B}_{t}\right)$ is standard Brownian motion, which implies that $\left(\tilde{X}_{t}\right)$ is a Q-martingale.

