Exam Stochastic Differential Equations (3TU)

June 15, 2009

The exam is closed book and consists of five problems with altogether fourteen items. The items are graded with 1, 2 or 4 points yielding a total of 25 points.

- 1. An urn contains b black and r red balls. A ball is drawn at random. It is replaced and, moreover, one ball of the same color is added. A new random drawing is made from the urn (now containing r + b + 1 balls), and this procedure is repeated. For n = 1, 2, ..., define the random variables X_n as follows: $X_n = 1$ if the nth drawing results in a red ball and $X_n = 0$ otherwise. Let Z_n be the fraction of red balls in the urn after the nth drawing, n = 1, 2, ... and $Z_0 = r/(r+b)$.
 - (a) **(1 pt)** Show that

$$Z_n = \frac{r + \sum_{i=1}^n X_i}{r + b + n}.$$

- (b) (2 pt) Show that the sequence $\{Z_n : n \ge 0\}$ is a martingale with respect to the sequence $\{X_n : n \ge 1\}$.
- (c) (1 pt) Explain carefully according to which Theorem the sequence $\{Z_n : n \ge 0\}$ converges almost surely to a limit Z_{∞} .
- (d) (1 pt) Prove that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} E[X_i] = E[Z_{\infty}],$$

with Z_{∞} defined as above.

2. Let B_t be a standard Brownian motion with filtration $(\mathcal{F})_t$. Define for A, B > 0,

$$\tau = \min\{t : B_t = -B \text{ or } B_t = A\}.$$

You may assume that τ has finite moments of all orders.

1

- (a) (2 pt) Show that $B_{t\wedge\tau}$ is a martingale (you may refer to a Theorem). Show that the random variables $|B_{t\wedge\tau}|, t \geq 0$, are uniformly bounded by a constant.
- (b) (2 pt) Show how $E[B_{\tau}]$ can be calculated from (a) and (b). Give also the probability distribution of B_{τ} .

Define

$$M_t = B_t^2 - t.$$

- (d) (1 pt) Show that M_t is a martingale.
- (e) (1 pt) Use the martingale M_t to prove that $E[\tau] = AB$.
- 3. Let B_t be a standard Brownian motion. Define the Gaussian processes

$$X_t = \int_0^t u \, \mathrm{d}B_u \text{ and } Y_t = \int_0^t B_u \, \mathrm{d}u, \quad t \in [0, T].$$

- (a) (2 pt) Calculate the stochastic differential dX_tY_t .
- (b) (2 pt) Calculate the covariance of X_t and Y_t .
- 4. (a) (2 pt) Solve the stochastic differential equation

$$dY_t = (\theta - aY_t) dt + \sigma dB_t$$

$$Y_0 = y_0$$

where a, σ are positive parameters and $\theta \in \mathbb{R}$. <u>Hint:</u> Let $Z_t = Y_t - \frac{\theta}{a}, t \ge 0$.

- (b) (2 pt) Let $X_t = e^{Y_t}, t \ge 0$, where Y_t is given in (a). Determine the stochastic differential equation satisfied by $\{X_t, t \ge 0\}$.
- (c) (2 pt) Let $\{r_t, t \ge 0\}$ satisfy

$$dr_t = r_t(\eta - a\log r_t)\,\mathrm{d}t + \sigma r_t\,\mathrm{d}B_t$$

where η, a, σ are positive parameters. Solve this equation using (a) and (b).

5. (4 pt) Let $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$ be a filtered probability space, $\{B_t, t \ge 0\}$ a standard Brownian motion with $\mathcal{F}_t = \sigma\{B_s; 0 \le s \le t\}$. Suppose that X_t satisfies the stochastic differential equation

$$dX_t = \mu X_t dt + \sigma X_t dB_t, \quad 0 \le t \le T$$

$$X_0 = x_0$$

2

and Y_t evolves deterministically as

Using Girsanov theorem, construct a probability measure under which $\tilde{X}_t \equiv \frac{X_t}{Y_t}, \ 0 \leq t \leq T$ is an \mathcal{F}_t martingale.

3