Exam Stochastic Differential Equations (3TU)

June 15, 2009

The exam is closed book and consists of five problems with altogether fourteen items. The items are graded with 1,2 or 4 points yielding a total of 25 points.

1. An urn contains b black and r red balls. A ball is drawn at random. It is replaced and, moreover, one ball of the same color is added. A new random drawing is made from the urn (now containing $r+b+1$ balls), and this procedure is repeated. For $n=1,2, \ldots$, define the random variables X_{n} as follows: $X_{n}=1$ if the nth drawing results in a red ball and $X_{n}=0$ otherwise. Let Z_{n} be the fraction of red balls in the urn after the nth drawing, $n=1,2, \ldots$ and $Z_{0}=r /(r+b)$.
(a) (1 pt) Show that

$$
Z_{n}=\frac{r+\sum_{i=1}^{n} X_{i}}{r+b+n} .
$$

(b) (2 pt) Show that the sequence $\left\{Z_{n}: n \geq 0\right\}$ is a martingale with respect to the sequence $\left\{X_{n}: n \geq 1\right\}$.
(c) ($\mathbf{1} \mathbf{p t)}$ Explain carefully according to which Theorem the sequence $\left\{Z_{n}: n \geq 0\right\}$ converges almost surely to a limit Z_{∞}.
(d) ($\mathbf{1} \mathbf{p t}$) Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right]=E\left[Z_{\infty}\right],
$$

with Z_{∞} defined as above.
2. Let B_{t} be a standard Brownian motion with filtration $(\mathcal{F})_{t}$. Define for $A, B>0$,

$$
\tau=\min \left\{t: B_{t}=-B \text { or } B_{t}=A\right\} .
$$

You may assume that τ has finite moments of all orders.
(a) (2 pt) Show that $B_{t \wedge \tau}$ is a martingale (you may refer to a Theorem). Show that the random variables $\left|B_{t \wedge \tau}\right|, t \geq 0$, are uniformly bounded by a constant.
(b) (2 pt) Show how $E\left[B_{\tau}\right]$ can be calculated from (a) and (b). Give also the probability distribution of B_{τ}.

Define

$$
M_{t}=B_{t}^{2}-t
$$

(d) (1 pt) Show that M_{t} is a martingale.
(e) (1 pt) Use the martingale M_{t} to prove that $E[\tau]=A B$.
3. Let B_{t} be a standard Brownian motion. Define the Gaussian processes

$$
X_{t}=\int_{0}^{t} u \mathrm{~d} B_{u} \text { and } Y_{t}=\int_{0}^{t} B_{u} \mathrm{~d} u, \quad t \in[0, T]
$$

(a) (2 pt) Calculate the stochastic differential $\mathrm{d} X_{t} Y_{t}$.
(b) $(2 \mathrm{pt})$ Calculate the covariance of X_{t} and Y_{t}.
4. (a) (2 pt) Solve the stochastic differential equation

$$
\begin{aligned}
\mathrm{d} Y_{t} & =\left(\theta-a Y_{t}\right) \mathrm{d} t+\sigma \mathrm{d} B_{t} \\
Y_{0} & =y_{0}
\end{aligned}
$$

where a, σ are positive parameters and $\theta \in \mathbb{R}$.
Hint: Let $Z_{t}=Y_{t}-\frac{\theta}{a}, t \geqslant 0$.
(b) (2 pt) Let $X_{t}=e^{Y_{t}}, t \geqslant 0$, where Y_{t} is given in (a). Determine the stochastic differential equation satisfied by $\left\{X_{t}, t \geqslant 0\right\}$.
(c) (2 pt) Let $\left\{r_{t}, t \geqslant 0\right\}$ satisfy

$$
d r_{t}=r_{t}\left(\eta-a \log r_{t}\right) \mathrm{d} t+\sigma r_{t} \mathrm{~d} B_{t}
$$

where η, a, σ are positive parameters. Solve this equation using (a) and (b).
5. (4 pt) Let $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, \mathbb{P}\right)$ be a filtered probability space, $\left\{B_{t}, t \geqslant 0\right\}$ a standard Brownian motion with $\mathcal{F}_{t}=\sigma\left\{B_{s} ; 0 \leqslant s \leqslant t\right\}$. Suppose that X_{t} satisfies the stochastic differential equation

$$
\begin{aligned}
d X_{t} & =\mu X_{t} \mathrm{~d} t+\sigma X_{t} \mathrm{~d} B_{t}, \quad 0 \leqslant t \leqslant T \\
X_{0} & =x_{0}
\end{aligned}
$$

and Y_{t} evolves deterministically as

$$
\begin{aligned}
\dot{Y}_{t} & =r Y_{t} \\
Y_{0} & =y_{0}
\end{aligned}
$$

Using Girsanov theorem, construct a probability measure under which $\tilde{X}_{t} \equiv \frac{X_{t}}{Y_{t}}, 0 \leqslant t \leqslant T$ is an \mathcal{F}_{t} martingale.

