EXAM STOCHASTIC DIFFERENTIAL EQUATIONS (3TU) - SOLUTIONS

May 30, 2011

$$
\text { Grading: } 2+\left(1+1 \frac{1}{2}\right)+1 \frac{1}{2}+2+2
$$

1. Since $\sigma\left(\gamma_{1}\right)$ is the collection of all sets of the form $\left\{\gamma_{1} \in A\right\}$ with A a Borel set in \mathbb{R}, we must show that

$$
\int_{\left\{\gamma_{1} \in A\right\}} 1_{\left\{\gamma_{1} \geq \gamma_{2}\right\}} d P=\int_{\left\{\gamma_{1} \in A\right\}} \Psi\left(\gamma_{1}\right) d \mathbb{P}
$$

By independence, the joint density of $\left(\gamma_{1}, \gamma_{2}\right)$ is given by

$$
f_{\left(\gamma_{1}, \gamma_{2}\right)}\left(x_{1}, x_{2}\right)=f_{\gamma_{1}}\left(x_{1}\right) f_{\gamma_{2}}\left(x_{2}\right)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2} x_{1}^{2}\right) \exp \left(-\frac{1}{2} x_{2}^{2}\right)
$$

and therefore

$$
\begin{aligned}
\int_{\left\{\gamma_{1} \in A\right\}} 1_{\left\{\gamma_{1} \geq \gamma_{2}\right\}} d P & =\frac{1}{2 \pi} \int_{A} \int_{-\infty}^{x_{1}} \exp \left(-\frac{1}{2} x_{1}^{2}\right) \exp \left(-\frac{1}{2} x_{2}^{2}\right) d x_{2} d x_{1} \\
& \frac{1}{\sqrt{2 \pi}} \int_{A} \Psi\left(x_{1}\right) \exp \left(-\frac{1}{2} x_{1}^{2}\right) d x_{1}=\int_{\left\{\gamma_{1} \in A\right\}} \Psi\left(\gamma_{1}\right) d \mathbb{P}
\end{aligned}
$$

2. a) First we check integrability. We have

$$
\mathbb{E}\left|e^{\eta_{n}}\right|=\mathbb{E} e^{\eta_{n}}=p \sum_{k=1}^{\infty} e^{k}(1-p)^{k-1}=p k \sum_{j=0}^{\infty} e^{j}(1-p)^{j}
$$

and this sum is (absolutely) if and only if $1-p<\frac{1}{e}$, that is, $1-\frac{1}{e}<p<1$. Hence, by independence, the ξ_{n} are integrable (for all $a \in \mathbb{R}$) if and only if $1-\frac{1}{e}<p<1$. Next, for these p,

$$
\mathbb{E}\left(\xi_{n} \mid \mathcal{F}_{n-1}\right)=e^{\eta_{1}+\cdots+\eta_{n-1}-(n-1) a} e^{-a} \mathbb{E}\left(e^{\eta_{n}} \mid \mathcal{F}_{n-1}\right)=\xi_{n-1} e^{-a} \mathbb{E} e^{\eta_{n}}
$$

since $e^{\eta_{1}+\cdots+\eta_{n-1}-(n-1) a}=\xi_{n-1}$ is \mathcal{F}_{n-1}-measurable and $e^{\eta_{n}}$ is independent of \mathcal{F}_{n-1}. Thus we find $\mathbb{E}\left(\xi_{n} \mid \mathcal{F}_{n-1}\right)=\xi_{n-1}$ if and only if $\mathbb{E} e^{\eta_{n}}=e^{a}$, that is, if and only if

$$
e^{a}=p k \sum_{j=0}^{\infty} e^{j}(1-p)^{j}=\frac{e p}{1-e(1-p)}
$$

that is, $a=\ln \frac{e p}{1-e(1-p)}$.
b) Almost sure convergence is immediate from L^{1}-boundedness (note that $\xi_{n} \geq 0$, so $\mathbb{E}\left|\xi_{n}\right|=\mathbb{E} \xi_{n}=\mathbb{E} \xi_{1}$) by the martingale convergence theorem.

Pointwise, the convergence implies that either $\eta_{1}+\cdots+\eta_{n}-n a \rightarrow-\infty$ (in which case the exponential converges to 0) or that $\eta_{1}+\cdots+\eta_{n}-n a$ converges to a finite limit. If the latter happens with positive probabiltiy, it would imply that $\eta_{n} \rightarrow a$ with positive probability; this is a contradiction since η_{n} can take any integer value with finite probability independent of n. It follows that we must have $\eta_{1}+\cdots+\eta_{n}-n a \rightarrow-\infty$, so $\xi_{n} \rightarrow 0$ almost surely. But $\mathbb{E} \xi_{n}=\mathbb{E} \xi_{1} \neq 0$, so we do not have L^{1}-convergence.
3. Since M_{n} is a submartingale, for all N we have

$$
\mathbb{E}\left(1_{\tau \leq N} M_{\tau}\right)=\sum_{n=0}^{N} \mathbb{E}\left(1_{\{\tau=n\}} M_{n}\right) \leq \sum_{n=0}^{N} \mathbb{E}\left(1_{\{\tau=n\}} M_{N}\right)=\mathbb{E} M_{N}
$$

where the used the definition of a submartingale along with the fact that $\{\tau=n\}$ belongs to \mathcal{F}_{n} in order to get the inequality. By monotone convergence (this uses the nonnegativity), the left-hand side converges to $\mathbb{E} M_{\tau}$, and the result follows by letting $N \rightarrow \infty$.

The game M_{n}, being a submartingale, is favourable to you. So your win more when you play indefinitely than when you stop.
4. From $\int_{0}^{T} B_{t} d B_{t}=\frac{1}{2}\left(B_{T}^{2}-T\right)$ we see

$$
B_{T}^{2}=T+2 \int_{0}^{T} B_{t}, d B_{t}
$$

Now Itô's formula for $Y_{t}:=t B_{t}^{2}$ gives

$$
Y_{T}=T B_{T}^{2}=\int_{0}^{T} B_{t}^{2} d t+2 \int_{0}^{T} t B_{t} d B_{t}+\int_{0}^{T} t d t
$$

and therefore

$$
\begin{aligned}
G=\int_{0}^{T} B_{t}^{2} d t & =T B_{T}^{2}-\frac{T^{2}}{2}-2 \int_{0}^{T} t B_{t} d B_{t} \\
& =T\left(T+2 \int_{0}^{T} B_{t} d B_{t}\right)-\frac{T^{2}}{2}-2 \int_{0}^{T} t B_{t} d B_{t} \\
& =\frac{T^{2}}{2}+\int_{0}^{T} 2(T-t) B_{t} d B_{t}
\end{aligned}
$$

This gives $g(t)=2(T-t) B_{t}$.
5. Note first that $Y_{t}=y_{0} e^{r t}$, so $\tilde{X}_{t}=y_{0}^{-1} e^{-r t} X_{t}$. Since

$$
d e^{-r t} X_{t}=-r e^{-r t} X_{t} d t+e^{-r t} d X_{t}=e^{-r t} X_{t}\left[(\mu-r) d t+\sigma d B_{t}\right]
$$

we may conclude that

$$
d \tilde{X}_{t}=\sigma \tilde{X}_{t}\left[\frac{\mu-r}{\sigma} d t+d B_{t}\right]=\sigma \tilde{X}_{t} d \tilde{B}_{t}
$$

where $\tilde{B}_{t}=B_{t}+\frac{\mu-r}{\sigma} t$. Let \mathbb{Q} be the measure defined by

$$
\mathbb{Q}(A)=\mathbb{E}_{\mathbb{P}}\left[1_{A} \exp \left(-\frac{\mu-r}{\sigma} B_{T}-\left(\frac{\mu-r}{\sigma}\right)^{2} \frac{T}{2}\right)\right]
$$

It follows from Girsanov's theorem that $\left(\tilde{B}_{t}\right)_{t \geq 0}$ is standard Brownian motion, which implies that $\left(\tilde{X}_{t}\right)_{t \geq 0}$ is a \mathbb{Q}-martingale.

