EXAM STOCHASTIC DIFFERENTIAL EQUATIONS (3TU)

June 11, 2012
Grading: $[1+2+3+1]+[1+2+1+1]+[1+1+2+1]+[2+(2+1)+(1+1)]+[2]$

1. Let S_{n} be simple symmetric random walk with $S_{0}=0$. Let

$$
\tau=\min \left\{n \geq 1: S_{n+1}=S_{n}+1\right\} \quad \text { and } \quad \rho=\tau+1
$$

(a) Is τ a stopping time? Is ρ a stopping time?
(b) Calculate $\mathbb{E}[\rho]$.
(c) Use the Stopping Time Theorem to show that $\mathbb{E}\left[S_{\rho}\right]=0$.
(d) Calculate $\mathbb{E}\left[S_{\tau}\right]$.
[You may use without further derivation that: $\sum_{n=1}^{\infty} n r^{n}=r(1-r)^{-2}$ for $r \in(-1,1)$.]
2. An urn contains b black and r red balls. A ball is drawn at random. It is replaced and, moreover, one ball of the same color is added. A new random drawing is made from the urn (now containing $r+b+1$ balls), and this procedure is repeated. For $n=1,2, \ldots$, define the random variables X_{n} as follows: $X_{n}=1$ if the nth drawing results in a red ball and $X_{n}=0$ otherwise. Let Z_{n} be the fraction of red balls in the urn after the nth drawing, $n=1,2, \ldots$ and $Z_{0}=r /(r+b)$.
(a) Show that

$$
Z_{n}=\frac{r+\sum_{i=1}^{n} X_{i}}{r+b+n}
$$

(b) Show that the sequence $\left\{Z_{n}: n \geq 0\right\}$ is a martingale with respect to the sequence $\left\{X_{n}: n \geq 1\right\}$.
(c) Explain carefully according to which theorem the sequence $\left\{Z_{n}: n \geq 0\right\}$ converges almost surely to a limit Z_{∞}.
(d) Prove that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right]=E\left[Z_{\infty}\right]
$$

with Z_{∞} defined as above.
3. Let $\left\{B_{t}: t \geq 0\right\}$ be standard Brownian motion, $\lambda \geq 0$ and

$$
Z_{t}=\exp \left(\sqrt{2 \lambda} B_{t}-\lambda t\right), \quad t \geq 0 .
$$

Define for $a>0$

$$
\tau=\inf \left\{t: B_{t}=a\right\} .
$$

You may assume that $\mathbb{P}(\tau<\infty)=1$.
(a) Show (from the first principle) that Z_{t} is a martingale with respect to the filtration \mathcal{F}_{t} of the Brownian motion B_{t}.
(b) Show that the sequence $Z_{\tau \wedge n}$ is uniformly bounded by a constant.
(c) Conclude from (a) and (b) that

$$
\mathbb{E}\left[e^{-\lambda \tau}\right]=e^{-a \sqrt{2 \lambda}}
$$

(d) Conclude from (c) that

$$
\mathbb{E}\left[\tau^{-1}\right]=a^{-2} .
$$

Hint: Use the identity $x^{-1}=\int_{0}^{\infty} e^{-\lambda x} \mathrm{~d} \lambda$ for $x>0$ and recall that the expectation of an exponential r.v. with density $a e^{-a x} \mathbf{1}_{[0, \infty)}(x) \quad(a>0)$ is equal to a^{-1}.
4. Let $\left(B_{t}\right)$ be a standard Brownian motion and

$$
\begin{equation*}
d X_{t}=X_{t} d B_{t}, \quad X_{0}=1 \tag{1}
\end{equation*}
$$

Define

$$
\begin{equation*}
Z_{t}=X_{t} e^{-\int_{0}^{t} B_{s}^{2} d s}, \quad 0 \leq t \leq 1 . \tag{2}
\end{equation*}
$$

(a) Apply Itô's formula to show that

$$
\begin{equation*}
d Z_{t}=Z_{t}\left(d B_{t}-B_{t}^{2} d t\right), \quad Z_{0}=1 . \tag{3}
\end{equation*}
$$

(b) Find the solution X_{t} satisfying the SDE (1) and use it to show that $E\left(Z_{t}^{2}\right) \leq e^{t}$. [You may just propose a solution to the SDE and appeal to the uniqueness theorem.]
(c) If one wants to consider the "integrated version" of the SDE (3) on its own, one needs to make sure that both of the following hold.

$$
\text { (i) } E\left[\left(\int_{0}^{1} Z_{t} d B_{t}\right)^{2}\right]<\infty \quad \text { and } \quad \text { (ii) } E\left[\int_{0}^{1} Z_{t} B_{t}^{2} d t\right]<\infty \text {, }
$$

Use (b) to verify that indeed (i) and (ii) hold if Z_{t} is as given in (2).
[You may use the fact that if $Y \sim N\left(0, \sigma^{2}\right)$, then $E\left(Y^{4}\right)=3 \sigma^{4}$.]
5. Let

$$
\begin{equation*}
X_{t}=e^{-\frac{1}{2} t} e^{B_{t}} \tag{4}
\end{equation*}
$$

under a measure \mathbb{P} on $C[0, T]$ where B_{t} is a \mathbb{P}-Brownian motion. Let \mathbb{Q} be a measure (on $C[0, T]$) defined by :

$$
\mathbb{Q}(A)=\mathbb{E}_{\mathbb{P}}\left[\mathbb{I}_{A} X_{T}\right] .
$$

Show that under measure \mathbb{Q},

$$
\begin{equation*}
X_{t}=e^{\frac{1}{2} t} e^{\tilde{B_{B}}} \tag{5}
\end{equation*}
$$

where \tilde{B}_{t} is a \mathbb{Q}-Brownian motion.
Hint: Write/express X_{t} as given in (4) in the form of (5). Apply Girsanov theorem to show that everything falls into places.

Solution

1. (a) $\{\tau=1\}=\left\{S_{1}=1, S_{2}=2\right\} \cup\left\{S_{1}=-1, S_{2}=0\right\}$, so $\{\tau=1\} \notin \sigma\left(S_{1}\right)$. Hence τ is not a stopping time. On the other hand,

$$
\begin{aligned}
\{\rho=n+1\}=\{\tau=n\}= & \left\{S_{1}=1, \ldots, S_{n}=-n+2, S_{n+1}=-n+3\right\} \\
& \cup\left\{S_{1}=-1, \ldots, S_{n}=-n, S_{n+1}=-n+1\right\}
\end{aligned}
$$

So $\{\rho=n+1\} \in \sigma\left(S_{1}, \ldots, S_{n+1}\right)$ and hence ρ is a stopping time.
(b)

$$
\begin{aligned}
\mathbb{P}(\rho=n+1)= & \mathbb{P}\left(S_{1}=1, \ldots, S_{n}=-n+2, S_{n+1}=-n+3\right) \\
& +\mathbb{P}\left(S_{1}=-1, \ldots, S_{n}=-n, S_{n+1}=-n+1\right) \\
= & (1 / 2)^{n+1}+(1 / 2)^{n+1}=(1 / 2)^{n}
\end{aligned}
$$

So

$$
\mathbb{E}(\rho)=\sum_{n=1}^{\infty}(n+1)\left(\frac{1}{2}\right)^{n}=3
$$

(c) By 1 (b), ρ is finite almost surely, so S_{ρ} is well-defined and $S_{\rho}=\lim _{n \rightarrow \infty} S_{\rho \wedge n}$. By the Stopping Time Theorem we have $\mathbb{E}\left[S_{\rho \wedge n}\right]=\mathbb{E}\left[S_{0}\right]=0$. Since $\left|S_{\rho \wedge n}\right| \leq \rho$, it follows from 1(b) and the dominated convergence theorem that

$$
\mathbb{E}\left[S_{\rho}\right]=\mathbb{E}\left[\lim _{n \rightarrow \infty} S_{\rho \wedge n}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[S_{\rho \wedge n}\right]=0
$$

This can also be seen directly by noting that

$$
\begin{aligned}
\mathbb{E}\left[S_{\rho}\right]= & \sum_{n=1}^{\infty} \mathbb{E}\left[S_{\rho} \mathbf{1}_{\{\rho=n+1\}}\right] \\
= & \sum_{n=1}^{\infty}\left\{(-n+3) \mathbb{P}\left(S_{1}=1, \ldots, S_{n}=-n+2, S_{n+1}=-n+3\right)\right. \\
& \left.\quad+(-n+1) \mathbb{P}\left(S_{1}=-1, \ldots, S_{n}=-n, S_{n+1}=-n+1\right)\right\} \\
= & \sum_{n=1}^{\infty}(4-2 n)\left(\frac{1}{2}\right)^{n+1}=0
\end{aligned}
$$

(d) Note that $S_{\rho}=S_{\tau+1}=S_{\tau}+1$. So $\mathbb{E}\left[S_{\tau}\right]=-1$.
2. (a) Note that the total number of red balls after the nth drawing is $r+\sum_{i=1}^{n} X_{i}$. The total number of balls in the urn after n drawings is $b+r+n$. So the fraction of red balls in the urn after the nth drawing is given by $Z_{n}=\left(r+\sum_{i=1}^{n} X_{i}\right) /(b+r+n)$.
(b) From (a) we have that $Z_{n}=f_{n}\left(X_{1}, \ldots, X_{n}\right)$ where $f_{n}\left(x_{1}, \ldots, x_{n}\right)=\frac{\left(r+n+\sum_{i=1}^{n} x_{i}\right)}{(b+r+n)}$. The expectation of Z_{n} is finite since $\left|Z_{n}\right| \leq 1$.

$$
\mathbb{E}\left(Z_{n} \mid X_{1}, \ldots, X_{n-1}\right)=\frac{r+\sum_{i=1}^{n-1} X_{i}}{r+b+n}+\frac{1}{r+b+n} \mathbb{E}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)
$$

Now

$$
\frac{r+\sum_{i=1}^{n-1} X_{i}}{r+b+n}=\left(1-\frac{1}{r+b+n}\right) Z_{n-1}
$$

and

$$
\mathbb{E}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right)=Z_{n}
$$

It follows that $\mathbb{E}\left(Z_{n} \mid X_{1}, \ldots, X_{n-1}\right)=Z_{n-1}$ and Z_{n} is a martingale.
(c) It follows from $\mid Z_{n} \leq 1$ that $\mathbb{E}\left(\left|Z_{n}\right|\right) \leq 1$. So the statement follows from the Bounded Martingale Convergence Theorem.
(d) The sequence Z_{n} is uniformly integrable since $\left|Z_{n}\right| \leq 1$, so Z_{n} converges in L^{1} to Z_{∞}. In particular, $\lim \mathbb{E}\left[Z_{n}\right]=\mathbb{E}\left[Z_{\infty}\right]$. From 2(a) we have, $\sum_{i=1}^{n} X_{i}=(r+b+n) Z_{n}-r$. Hence

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}=\mathbb{E}\left[Z_{\infty}\right]
$$

3. (a) Clearly Z_{t} is \mathcal{F}_{t}-measurable. Integrability of Z_{t} follows from the fact that for a standard normal r.v. $U, \mathbb{E}(\exp (x U))=\exp \left(x^{2} / 2\right)$.
Note further that for $s<t$ we have $Z_{t}=Z_{s} e^{\sqrt{2 \lambda}\left(B_{t}-B_{s}\right)-\lambda(t-s)}$. So

$$
\mathbb{E}\left(Z_{t} \mid \mathcal{F}_{s}\right)=Z_{s} \mathbb{E}\left[e^{\sqrt{2 \lambda}\left(B_{t}-B_{s}\right)-\lambda(t-s)}\right]=Z_{s} \mathbb{E}\left[e^{\sqrt{2 \lambda} \sqrt{t-s} U-\lambda(t-s)}\right]
$$

where $U \sim N(0,1)$. Since $\mathbb{E}\left[e^{\sqrt{2 \lambda} \sqrt{t-s} U-\lambda(t-s)}\right]=1$, it follows that Z_{t} is a martingale.
(b) Note that for $n \leq \tau, Z_{n} \leq a$. Then for all $n, Z_{\tau \wedge n} \leq \exp (a \sqrt{2 \lambda})$.
(c) τ is a stopping time. So by the stopping time theorem for continuous time parameter martingales we have that $\mathbb{E}\left[Z_{\tau \wedge n}\right]=\mathbb{E}\left[Z_{0}\right]=1$. Since $\mathbb{P}(\tau<\infty)=1$, we have $\lim _{n \rightarrow \infty} Z_{\tau \wedge n}=\exp (a \sqrt{2 \lambda}-\lambda \tau)$. By $3(\mathrm{~b})$ and the dominated convergence theorem we get $\mathbb{E}[\exp (a \sqrt{2 \lambda}-\lambda \tau)]=1$. Multiplication with $\exp (-a \sqrt{2 \lambda})$ gives the result.
(d) Since $\mathbb{P}(0<\tau<\infty)=1$, we get $\mathbb{E}\left[\tau^{-1}\right]=\mathbb{E}\left[\int_{0}^{\infty} e^{-\lambda \tau} \mathrm{d} \lambda\right]$ which equals by Fubini's theorem $\int_{0}^{\infty} \mathbb{E}\left[e^{-\lambda \tau}\right] \mathrm{d} \lambda=\int_{0}^{\infty} e^{-a \sqrt{2 \lambda}} \mathrm{~d} \lambda$. Substituting $x=\sqrt{2 \lambda}$ we arrive at $\int_{0}^{\infty} x e^{-a x} \mathrm{~d} x=a^{-1} \int_{0}^{\infty} x a e^{-a x} \mathrm{~d} x=a^{-2}$.
4. (a) Applying Itô's formula to $Z_{t}=f\left(t, X_{t}\right)$ where $f(t, x)=x e^{-g(t)}$ with $g(t)=\int_{0}^{t} B_{s}^{2} d s$, we have

$$
\begin{aligned}
d Z_{t} & =f_{t} d t+f_{x} d X_{t}+\frac{1}{2} f_{x x} d X_{t} \cdot d X_{t} \\
& =X_{t} e^{-g(t)} \cdot\left(-g^{\prime}(t)\right) d t+e^{-g(t)} d X_{t}+0 \\
& =X_{t} e^{-g(t)}\left(-B_{t}^{2}\right) d t+e^{-g(t)} X_{t} d B_{t} \\
& =Z_{t}\left(d B_{t}-B_{t}^{2} d t\right)
\end{aligned}
$$

(b) An application of Itô formula shows that $X_{t}=e^{B_{t}-\frac{1}{2} t}$ is $\underline{\mathbf{a}}$ solution to the SDE (1). The uniqueness theorem ensures that this is the (unique) solution.
Since $g(t)=\int_{0}^{t} B_{s}^{2} d s \geq 0$ and as a result $Z_{t}=X_{t} e^{-g(t)} \leq X_{t}$, we have

$$
E\left(Z_{t}^{2}\right) \leq E\left(X_{t}^{2}\right)=E\left[e^{2 B_{t}-t}\right]=e^{-t} e^{\frac{1}{2} 4 t}=e^{t}
$$

(c) From Itô isometry it follows that

$$
E\left[\left(\int_{0}^{1} Z_{t} d B_{t}\right)^{2}\right]=\int_{0}^{1} E\left(Z_{t}^{2}\right) d t \leq \int_{0}^{1} E\left(X_{t}^{2}\right) d t \leq \int_{0}^{1} e^{t} d t \leq(e-1)<\infty
$$

Using Fubini and (two times) Cauchy-Schwartz we have

$$
\begin{aligned}
E\left[\int_{0}^{1} Z_{t} B_{t}^{2} d t\right] & =\int_{0}^{1} E\left[Z_{t} B_{t}^{2}\right] d t \leq \int_{0}^{1}\left(E\left[Z_{t}^{2}\right]\right)^{\frac{1}{2}}\left(E\left[B_{t}^{4}\right]\right)^{\frac{1}{2}} d t \\
& \leq\left(\int_{0}^{1} E\left[Z_{t}^{2}\right] d t\right)^{\frac{1}{2}}\left(\int_{0}^{1} E\left[B_{t}^{4}\right] d t\right)^{\frac{1}{2}} \\
& =\left(\int_{0}^{1} E\left[Z_{t}^{2}\right] d t\right)^{\frac{1}{2}}\left(\int_{0}^{1} 3 t^{2} d t\right)^{\frac{1}{2}} \\
& \leq \sqrt{e-1}<\infty .
\end{aligned}
$$

5. Note that

$$
X_{t}=e^{-\frac{1}{2} t} e^{B_{t}}=e^{\frac{1}{2} t} e^{B_{t}-t}=e^{\frac{1}{2} t} e^{\tilde{B}_{t}},
$$

where $\tilde{B}_{t}=B_{t}-t=B_{t}-\int_{0}^{t} \mu d s$, with $\mu \equiv 1$. Let us use Girsanov theorem to find a new measure such that the new process \tilde{B}_{t} becomes a BM. We obtain the new measure to be \mathbb{Q} with

$$
\frac{d \mathbb{Q}}{d \mathbb{P}}=e^{\int_{0}^{T} \mu d B_{s}-\frac{1}{2} \int_{0}^{T} \mu^{2} d s}=e^{B_{T}-\frac{1}{2} T}=X_{T}
$$

This is thus the same measure given in the question, namely, $\mathbb{Q}(A)=\mathbb{E}_{\mathbb{P}}\left[\mathbb{I}_{A} X_{T}\right]$.
Hence we have proved that $X_{t}=e^{\frac{1}{2} t} e^{\tilde{B}_{t}}$, where \tilde{B}_{t} is a \mathbb{Q}-BM.

