
EXAM STOCHASTIC DIFFERENTIAL EQUATIONS (3TU)
June 11, 2012

Grading: [1+2+3+1] + [1+2+1+1] + [1+1+2+1] + [2+(2+1)+(1+1)] + [2]

1. Let Sn be simple symmetric random walk with S0 = 0. Let

τ = min{n ≥ 1 : Sn+1 = Sn + 1} and ρ = τ + 1.

(a) Is τ a stopping time? Is ρ a stopping time?

(b) Calculate E [ρ].

(c) Use the Stopping Time Theorem to show that E[Sρ] = 0.

(d) Calculate E[Sτ ].

[You may use without further derivation that:
∑∞

n=1 nr
n = r(1− r)−2 for r ∈ (−1, 1).]

2. An urn contains b black and r red balls. A ball is drawn at random. It is replaced and,
moreover, one ball of the same color is added. A new random drawing is made from the
urn (now containing r + b + 1 balls), and this procedure is repeated. For n = 1, 2, . . .,
define the random variables Xn as follows: Xn = 1 if the nth drawing results in a red
ball and Xn = 0 otherwise. Let Zn be the fraction of red balls in the urn after the nth
drawing, n = 1, 2, . . . and Z0 = r/(r + b).

(a) Show that

Zn =
r +

∑n
i=1Xi

r + b+ n
.

(b) Show that the sequence {Zn : n ≥ 0} is a martingale with respect to the sequence
{Xn : n ≥ 1}.

(c) Explain carefully according to which theorem the sequence {Zn : n ≥ 0} converges
almost surely to a limit Z∞.

(d) Prove that

lim
n→∞

1

n

n∑
i=1

E[Xi] = E[Z∞],

with Z∞ defined as above.

3. Let {Bt : t ≥ 0} be standard Brownian motion, λ ≥ 0 and

Zt = exp(
√

2λBt − λt), t ≥ 0.

Define for a > 0

τ = inf{t : Bt = a}.

You may assume that P(τ <∞) = 1.

(a) Show (from the first principle) that Zt is a martingale with respect to the filtration
Ft of the Brownian motion Bt.
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(b) Show that the sequence Zτ∧n is uniformly bounded by a constant.

(c) Conclude from (a) and (b) that

E
[
e−λτ

]
= e−a

√
2λ.

(d) Conclude from (c) that

E
[
τ−1

]
= a−2.

Hint: Use the identity x−1 =
∫∞
0 e−λx dλ for x > 0 and recall that the expectation

of an exponential r.v. with density ae−ax1[0,∞)(x) (a > 0) is equal to a−1.

4. Let (Bt) be a standard Brownian motion and

dXt = XtdBt, X0 = 1. (1)

Define
Zt = Xte

−
∫ t
0 B

2
sds, 0 ≤ t ≤ 1. (2)

(a) Apply Itô’s formula to show that

dZt = Zt(dBt −B2
t dt), Z0 = 1. (3)

(b) Find the solution Xt satisfying the SDE (1) and use it to show that E(Z2
t ) ≤ et .

[You may just propose a solution to the SDE and appeal to the uniqueness theorem.]

(c) If one wants to consider the “integrated version” of the SDE (3) on its own, one
needs to make sure that both of the following hold.

(i) E

[(∫ 1

0
ZtdBt

)2
]
<∞ and (ii) E

[∫ 1

0
ZtB

2
t dt

]
<∞,

Use (b) to verify that indeed (i) and (ii) hold if Zt is as given in (2).

[You may use the fact that if Y ∼ N(0, σ2), then E(Y 4) = 3σ4.]

5. Let
Xt = e−

1
2
teBt (4)

under a measure P on C[0, T ] where Bt is a P-Brownian motion. Let Q be a measure
(on C[0, T ]) defined by :

Q(A) = EP [IAXT ] .

Show that under measure Q,

Xt = e
1
2
teB̃t (5)

where B̃t is a Q-Brownian motion.

Hint: Write/express Xt as given in (4) in the form of (5). Apply Girsanov theorem to
show that everything falls into places.
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Solution

1. (a) {τ = 1} = {S1 = 1, S2 = 2} ∪ {S1 = −1, S2 = 0}, so {τ = 1} 6∈ σ(S1). Hence τ is
not a stopping time. On the other hand,

{ρ = n+ 1} = {τ = n} = {S1 = 1, . . . , Sn = −n+ 2, Sn+1 = −n+ 3}
∪ {S1 = −1, . . . , Sn = −n, Sn+1 = −n+ 1}.

So {ρ = n+ 1} ∈ σ(S1, . . . , Sn+1) and hence ρ is a stopping time.

(b)

P(ρ = n+ 1) = P(S1 = 1, . . . , Sn = −n+ 2, Sn+1 = −n+ 3)

+ P(S1 = −1, . . . , Sn = −n, Sn+1 = −n+ 1)

= (1/2)n+1 + (1/2)n+1 = (1/2)n.

So

E(ρ) =

∞∑
n=1

(n+ 1)

(
1

2

)n
= 3.

(c) By 1(b), ρ is finite almost surely, so Sρ is well-defined and Sρ = limn→∞ Sρ∧n. By
the Stopping Time Theorem we have E[Sρ∧n] = E[S0] = 0. Since |Sρ∧n| ≤ ρ, it
follows from 1(b) and the dominated convergence theorem that

E[Sρ] = E[ lim
n→∞

Sρ∧n] = lim
n→∞

E[Sρ∧n] = 0.

This can also be seen directly by noting that

E[Sρ] =

∞∑
n=1

E
[
Sρ1{ρ=n+1}

]
=

∞∑
n=1

{(−n+ 3)P(S1 = 1, . . . , Sn = −n+ 2, Sn+1 = −n+ 3)

+(−n+ 1)P(S1 = −1, . . . , Sn = −n, Sn+1 = −n+ 1)}

=

∞∑
n=1

(4− 2n)

(
1

2

)n+1

= 0.

(d) Note that Sρ = Sτ+1 = Sτ + 1. So E[Sτ ] = −1.

2. (a) Note that the total number of red balls after the nth drawing is r+
∑n

i=1Xi. The
total number of balls in the urn after n drawings is b+ r+n. So the fraction of red
balls in the urn after the nth drawing is given by Zn = (r +

∑n
i=1Xi)/(b+ r + n).

(b) From (a) we have that Zn = fn(X1, . . . , Xn) where fn(x1, . . . , xn) =
(r+n+

∑n
i=1 xi)

(b+r+n) .

The expectation of Zn is finite since |Zn| ≤ 1.

E(Zn|X1, . . . , Xn−1) =
r +

∑n−1
i=1 Xi

r + b+ n
+

1

r + b+ n
E(Xn|X1, . . . , Xn−1)

Now

r +
∑n−1

i=1 Xi

r + b+ n
=

(
1− 1

r + b+ n

)
Zn−1
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and

E(Xn|X1, . . . , Xn−1) = Zn.

It follows that E(Zn|X1, . . . , Xn−1) = Zn−1 and Zn is a martingale.

(c) It follows from |Zn ≤ 1 that E(|Zn|) ≤ 1. So the statement follows from the
Bounded Martingale Convergence Theorem.

(d) The sequence Zn is uniformly integrable since |Zn| ≤ 1, so Zn converges in L1 to Z∞.
In particular, limE[Zn] = E[Z∞]. From 2(a) we have,

∑n
i=1Xi = (r+ b+n)Zn− r.

Hence

lim
n→∞

1

n

n∑
i=1

Xi = E[Z∞].

3. (a) Clearly Zt is Ft-measurable. Integrability of Zt follows from the fact that for a
standard normal r.v. U , E(exp(xU)) = exp(x2/2).

Note further that for s < t we have Zt = Zs e
√
2λ(Bt−Bs)−λ(t−s). So

E(Zt|Fs) = ZsE
[
e
√
2λ(Bt−Bs)−λ(t−s)

]
= ZsE

[
e
√
2λ
√
t−sU−λ(t−s)

]
where U ∼ N(0, 1). Since E

[
e
√
2λ
√
t−sU−λ(t−s)

]
= 1, it follows that Zt is a martin-

gale.

(b) Note that for n ≤ τ , Zn ≤ a. Then for all n, Zτ∧n ≤ exp(a
√

2λ).

(c) τ is a stopping time. So by the stopping time theorem for continuous time parameter
martingales we have that E[Zτ∧n] = E[Z0] = 1. Since P(τ < ∞) = 1, we have
limn→∞ Zτ∧n = exp(a

√
2λ−λτ). By 3(b) and the dominated convergence theorem

we get E[exp(a
√

2λ− λτ)] = 1. Multiplication with exp(−a
√

2λ) gives the result.

(d) Since P(0 < τ <∞) = 1, we get E[τ−1] = E
[∫∞

0 e−λτ dλ
]

which equals by Fubini’s

theorem
∫∞
0 E

[
e−λτ

]
dλ =

∫∞
0 e−a

√
2λ dλ. Substituting x =

√
2λ we arrive at∫∞

0 xe−ax dx = a−1
∫∞
0 xae−ax dx = a−2.

4. (a) Applying Itô’s formula to Zt = f(t,Xt) where f(t, x) = xe−g(t) with g(t) =
∫ t
0 B

2
sds,

we have

dZt = ftdt+ fxdXt +
1

2
fxxdXt · dXt

= Xte
−g(t) · (−g′(t))dt+ e−g(t)dXt + 0

= Xte
−g(t)(−B2

t )dt+ e−g(t)XtdBt

= Zt(dBt −B2
t dt)

(b) An application of Itô formula shows that Xt = eBt− 1
2
t is a solution to the SDE (1).

The uniqueness theorem ensures that this is the (unique) solution.

Since g(t) =
∫ t
0 B

2
sds ≥ 0 and as a result Zt = Xte

−g(t) ≤ Xt, we have

E(Z2
t ) ≤ E(X2

t ) = E[e2Bt−t] = e−te
1
2
4t = et.
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(c) From Itô isometry it follows that

E

[(∫ 1

0
ZtdBt

)2
]

=

∫ 1

0
E(Z2

t )dt ≤
∫ 1

0
E(X2

t )dt ≤
∫ 1

0
etdt ≤ (e− 1) <∞.

Using Fubini and (two times) Cauchy-Schwartz we have

E

[∫ 1

0
ZtB

2
t dt

]
=

∫ 1

0
E[ZtB

2
t ]dt ≤

∫ 1

0
(E[Z2

t ])
1
2 (E[B4

t ])
1
2dt

≤
(∫ 1

0
E[Z2

t ]dt

) 1
2
(∫ 1

0
E[B4

t ]dt

) 1
2

=

(∫ 1

0
E[Z2

t ]dt

) 1
2
(∫ 1

0
3t2dt

) 1
2

≤
√
e− 1 < ∞.

5. Note that
Xt = e−

1
2
teBt = e

1
2
teBt−t = e

1
2
teB̃t ,

where B̃t = Bt − t = Bt −
∫ t
0 µds, with µ ≡ 1. Let us use Girsanov theorem to find a

new measure such that the new process B̃t becomes a BM. We obtain the new measure
to be Q with

dQ
dP

= e
∫ T
0 µdBs− 1

2

∫ T
0 µ2 ds = eBT− 1

2
T = XT .

This is thus the same measure given in the question, namely, Q(A) = EP [IAXT ] .

Hence we have proved that Xt = e
1
2
teB̃t , where B̃t is a Q-BM.
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