EXAM STOCHASTIC DIFFERENTIAL EQUATIONS (3TU) June 11, 2012

Grading: [1+2+3+1] + [1+2+1+1] + [1+1+2+1] + [2+(2+1)+(1+1)] + [2]

1. Let S_n be simple symmetric random walk with $S_0 = 0$. Let

 $\tau = \min\{n \ge 1 : S_{n+1} = S_n + 1\}$ and $\rho = \tau + 1$.

- (a) Is τ a stopping time? Is ρ a stopping time?
- (b) Calculate $\mathbb{E}[\rho]$.
- (c) Use the Stopping Time Theorem to show that $\mathbb{E}[S_{\rho}] = 0$.
- (d) Calculate $\mathbb{E}[S_{\tau}]$.

[You may use without further derivation that: $\sum_{n=1}^{\infty} nr^n = r(1-r)^{-2}$ for $r \in (-1,1)$.]

- 2. An urn contains b black and r red balls. A ball is drawn at random. It is replaced and, moreover, one ball of the same color is added. A new random drawing is made from the urn (now containing r + b + 1 balls), and this procedure is repeated. For n = 1, 2, ..., define the random variables X_n as follows: $X_n = 1$ if the nth drawing results in a red ball and $X_n = 0$ otherwise. Let Z_n be the fraction of red balls in the urn after the nth drawing, n = 1, 2, ... and $Z_0 = r/(r + b)$.
 - (a) Show that

$$Z_n = \frac{r + \sum_{i=1}^n X_i}{r + b + n}.$$

- (b) Show that the sequence $\{Z_n : n \ge 0\}$ is a martingale with respect to the sequence $\{X_n : n \ge 1\}$.
- (c) Explain carefully according to which theorem the sequence $\{Z_n : n \ge 0\}$ converges almost surely to a limit Z_{∞} .
- (d) Prove that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} E[X_i] = E[Z_{\infty}],$$

with Z_{∞} defined as above.

3. Let $\{B_t : t \ge 0\}$ be standard Brownian motion, $\lambda \ge 0$ and

$$Z_t = \exp(\sqrt{2\lambda}B_t - \lambda t), \quad t \ge 0.$$

Define for a > 0

$$\tau = \inf\{t : B_t = a\}.$$

You may assume that $\mathbb{P}(\tau < \infty) = 1$.

(a) Show (from the first principle) that Z_t is a martingale with respect to the filtration \mathcal{F}_t of the Brownian motion B_t .

- (b) Show that the sequence $Z_{\tau \wedge n}$ is uniformly bounded by a constant.
- (c) Conclude from (a) and (b) that

$$\mathbb{E}\left[e^{-\lambda\tau}\right] = e^{-a\sqrt{2\lambda}}.$$

(d) Conclude from (c) that

$$\mathbb{E}\left[\tau^{-1}\right] = a^{-2}.$$

<u>*Hint:*</u> Use the identity $x^{-1} = \int_0^\infty e^{-\lambda x} d\lambda$ for x > 0 and recall that the expectation of an exponential r.v. with density $ae^{-ax}\mathbf{1}_{[0,\infty)}(x)$ (a > 0) is equal to a^{-1} .

4. Let (B_t) be a standard Brownian motion and

$$dX_t = X_t dB_t, \quad X_0 = 1. \tag{1}$$

Define

$$Z_t = X_t e^{-\int_0^t B_s^2 ds}, \quad 0 \le t \le 1.$$
(2)

(a) Apply Itô's formula to show that

$$dZ_t = Z_t (dB_t - B_t^2 dt), \quad Z_0 = 1.$$
 (3)

(b) Find the solution X_t satisfying the SDE (1) and use it to show that $E(Z_t^2) \leq e^t$.

[You may just propose a solution to the SDE and appeal to the uniqueness theorem.]

(c) If one wants to consider the "integrated version" of the SDE (3) on its own, one needs to make sure that both of the following hold.

(i)
$$E\left[\left(\int_0^1 Z_t dB_t\right)^2\right] < \infty$$
 and (ii) $E\left[\int_0^1 Z_t B_t^2 dt\right] < \infty$,

Use (b) to verify that indeed (i) and (ii) hold if Z_t is as given in (2).

[You may use the fact that if $Y \sim N(0, \sigma^2)$, then $E(Y^4) = 3\sigma^4$.]

5. Let

$$X_t = e^{-\frac{1}{2}t} e^{B_t} \tag{4}$$

under a measure \mathbb{P} on C[0,T] where B_t is a \mathbb{P} -Brownian motion. Let \mathbb{Q} be a measure (on C[0,T]) defined by :

$$\mathbb{Q}(A) = \mathbb{E}_{\mathbb{P}}\left[\mathbb{I}_A X_T\right].$$

Show that under measure \mathbb{Q} ,

$$X_t = e^{\frac{1}{2}t} e^{\tilde{B}_t} \tag{5}$$

where \tilde{B}_t is a Q-Brownian motion.

<u>*Hint:*</u> Write/express X_t as given in (4) in the form of (5). Apply Girsanov theorem to show that everything falls into places.

Solution

1. (a) $\{\tau = 1\} = \{S_1 = 1, S_2 = 2\} \cup \{S_1 = -1, S_2 = 0\}$, so $\{\tau = 1\} \notin \sigma(S_1)$. Hence τ is not a stopping time. On the other hand,

$$\{\rho = n+1\} = \{\tau = n\} = \{S_1 = 1, \dots, S_n = -n+2, S_{n+1} = -n+3\} \\ \cup \{S_1 = -1, \dots, S_n = -n, S_{n+1} = -n+1\}.$$

So $\{\rho = n+1\} \in \sigma(S_1, \dots, S_{n+1})$ and hence ρ is a stopping time. (b)

$$\mathbb{P}(\rho = n+1) = \mathbb{P}(S_1 = 1, \dots, S_n = -n+2, S_{n+1} = -n+3) \\ + \mathbb{P}(S_1 = -1, \dots, S_n = -n, S_{n+1} = -n+1) \\ = (1/2)^{n+1} + (1/2)^{n+1} = (1/2)^n.$$

 So

$$\mathbb{E}(\rho) = \sum_{n=1}^{\infty} (n+1) \left(\frac{1}{2}\right)^n = 3.$$

(c) By 1(b), ρ is finite almost surely, so S_{ρ} is well-defined and $S_{\rho} = \lim_{n \to \infty} S_{\rho \wedge n}$. By the Stopping Time Theorem we have $\mathbb{E}[S_{\rho \wedge n}] = \mathbb{E}[S_0] = 0$. Since $|S_{\rho \wedge n}| \leq \rho$, it follows from 1(b) and the dominated convergence theorem that

$$\mathbb{E}[S_{\rho}] = \mathbb{E}[\lim_{n \to \infty} S_{\rho \wedge n}] = \lim_{n \to \infty} \mathbb{E}[S_{\rho \wedge n}] = 0.$$

This can also be seen directly by noting that

$$\mathbb{E}[S_{\rho}] = \sum_{n=1}^{\infty} \mathbb{E}\left[S_{\rho}\mathbf{1}_{\{\rho=n+1\}}\right]$$

=
$$\sum_{n=1}^{\infty} \{(-n+3)\mathbb{P}(S_{1}=1,\ldots,S_{n}=-n+2,S_{n+1}=-n+3)$$

+
$$(-n+1)\mathbb{P}(S_{1}=-1,\ldots,S_{n}=-n,S_{n+1}=-n+1)\}$$

=
$$\sum_{n=1}^{\infty} (4-2n)\left(\frac{1}{2}\right)^{n+1} = 0.$$

- (d) Note that $S_{\rho} = S_{\tau+1} = S_{\tau} + 1$. So $\mathbb{E}[S_{\tau}] = -1$.
- 2. (a) Note that the total number of red balls after the *n*th drawing is $r + \sum_{i=1}^{n} X_i$. The total number of balls in the urn after *n* drawings is b + r + n. So the fraction of red balls in the urn after the *n*th drawing is given by $Z_n = (r + \sum_{i=1}^{n} X_i)/(b + r + n)$.
 - (b) From (a) we have that $Z_n = f_n(X_1, \ldots, X_n)$ where $f_n(x_1, \ldots, x_n) = \frac{(r+n+\sum_{i=1}^n x_i)}{(b+r+n)}$. The expectation of Z_n is finite since $|Z_n| \leq 1$.

$$\mathbb{E}(Z_n|X_1,\dots,X_{n-1}) = \frac{r + \sum_{i=1}^{n-1} X_i}{r+b+n} + \frac{1}{r+b+n} \mathbb{E}(X_n|X_1,\dots,X_{n-1})$$

Now

$$\frac{r + \sum_{i=1}^{n-1} X_i}{r+b+n} = \left(1 - \frac{1}{r+b+n}\right) Z_{n-1}$$

$$\mathbb{E}(X_n|X_1,\ldots,X_{n-1})=Z_n.$$

It follows that $\mathbb{E}(Z_n|X_1,\ldots,X_{n-1}) = Z_{n-1}$ and Z_n is a martingale.

- (c) It follows from $|Z_n \leq 1$ that $\mathbb{E}(|Z_n|) \leq 1$. So the statement follows from the Bounded Martingale Convergence Theorem.
- (d) The sequence Z_n is uniformly integrable since $|Z_n| \leq 1$, so Z_n converges in L^1 to Z_∞ . In particular, $\lim \mathbb{E}[Z_n] = \mathbb{E}[Z_\infty]$. From 2(a) we have, $\sum_{i=1}^n X_i = (r+b+n)Z_n - r$. Hence

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \mathbb{E}[Z_{\infty}].$$

3. (a) Clearly Z_t is \mathcal{F}_t -measurable. Integrability of Z_t follows from the fact that for a standard normal r.v. U, $\mathbb{E}(\exp(xU)) = \exp(x^2/2)$.

Note further that for s < t we have $Z_t = Z_s e^{\sqrt{2\lambda}(B_t - B_s) - \lambda(t-s)}$. So

$$\mathbb{E}(Z_t|\mathcal{F}_s) = Z_s \mathbb{E}\left[e^{\sqrt{2\lambda}(B_t - B_s) - \lambda(t-s)}\right] = Z_s \mathbb{E}\left[e^{\sqrt{2\lambda}\sqrt{t-s}U - \lambda(t-s)}\right]$$

where $U \sim N(0, 1)$. Since $\mathbb{E}\left[e^{\sqrt{2\lambda}\sqrt{t-s}U-\lambda(t-s)}\right] = 1$, it follows that Z_t is a martingale.

- (b) Note that for $n \leq \tau$, $Z_n \leq a$. Then for all $n, Z_{\tau \wedge n} \leq \exp(a\sqrt{2\lambda})$.
- (c) τ is a stopping time. So by the stopping time theorem for continuous time parameter martingales we have that $\mathbb{E}[Z_{\tau \wedge n}] = \mathbb{E}[Z_0] = 1$. Since $\mathbb{P}(\tau < \infty) = 1$, we have $\lim_{n \to \infty} Z_{\tau \wedge n} = \exp(a\sqrt{2\lambda} - \lambda\tau)$. By 3(b) and the dominated convergence theorem we get $\mathbb{E}[\exp(a\sqrt{2\lambda} - \lambda\tau)] = 1$. Multiplication with $\exp(-a\sqrt{2\lambda})$ gives the result.
- (d) Since $\mathbb{P}(0 < \tau < \infty) = 1$, we get $\mathbb{E}[\tau^{-1}] = \mathbb{E}\left[\int_0^\infty e^{-\lambda \tau} d\lambda\right]$ which equals by Fubini's theorem $\int_0^\infty \mathbb{E}\left[e^{-\lambda \tau}\right] d\lambda = \int_0^\infty e^{-a\sqrt{2\lambda}} d\lambda$. Substituting $x = \sqrt{2\lambda}$ we arrive at $\int_0^\infty x e^{-ax} dx = a^{-1} \int_0^\infty x a e^{-ax} dx = a^{-2}$.
- 4. (a) Applying Itô's formula to $Z_t = f(t, X_t)$ where $f(t, x) = xe^{-g(t)}$ with $g(t) = \int_0^t B_s^2 ds$, we have

$$dZ_t = f_t dt + f_x dX_t + \frac{1}{2} f_{xx} dX_t \cdot dX_t$$

= $X_t e^{-g(t)} \cdot (-g'(t)) dt + e^{-g(t)} dX_t + 0$
= $X_t e^{-g(t)} (-B_t^2) dt + e^{-g(t)} X_t dB_t$
= $Z_t (dB_t - B_t^2 dt)$

(b) An application of Itô formula shows that $X_t = e^{B_t - \frac{1}{2}t}$ is **a** solution to the SDE (1). The uniqueness theorem ensures that this is the (unique) solution. Since $g(t) = \int_0^t B_s^2 ds \ge 0$ and as a result $Z_t = X_t e^{-g(t)} \le X_t$, we have

$$E(Z_t^2) \le E(X_t^2) = E[e^{2B_t - t}] = e^{-t}e^{\frac{1}{2}4t} = e^t.$$

and

(c) From Itô isometry it follows that

$$E\left[\left(\int_{0}^{1} Z_{t} dB_{t}\right)^{2}\right] = \int_{0}^{1} E(Z_{t}^{2}) dt \leq \int_{0}^{1} E(X_{t}^{2}) dt \leq \int_{0}^{1} e^{t} dt \leq (e-1) < \infty.$$

Using Fubini and (two times) Cauchy-Schwartz we have

$$E\left[\int_{0}^{1} Z_{t}B_{t}^{2}dt\right] = \int_{0}^{1} E[Z_{t}B_{t}^{2}]dt \leq \int_{0}^{1} (E[Z_{t}^{2}])^{\frac{1}{2}} (E[B_{t}^{4}])^{\frac{1}{2}}dt$$
$$\leq \left(\int_{0}^{1} E[Z_{t}^{2}]dt\right)^{\frac{1}{2}} \left(\int_{0}^{1} E[B_{t}^{4}]dt\right)^{\frac{1}{2}}$$
$$= \left(\int_{0}^{1} E[Z_{t}^{2}]dt\right)^{\frac{1}{2}} \left(\int_{0}^{1} 3t^{2}dt\right)^{\frac{1}{2}}$$
$$\leq \sqrt{e-1} < \infty.$$

5. Note that

$$X_t = e^{-\frac{1}{2}t}e^{B_t} = e^{\frac{1}{2}t}e^{B_t - t} = e^{\frac{1}{2}t}e^{\tilde{B}_t},$$

where $\tilde{B}_t = B_t - t = B_t - \int_0^t \mu \, ds$, with $\mu \equiv 1$. Let us use Girsanov theorem to find a new measure such that the new process \tilde{B}_t becomes a BM. We obtain the new measure to be \mathbb{Q} with

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = e^{\int_0^T \mu \, dB_s - \frac{1}{2} \int_0^T \mu^2 \, ds} = e^{B_T - \frac{1}{2}T} = X_T.$$

This is thus the same measure given in the question, namely, $\mathbb{Q}(A) = \mathbb{E}_{\mathbb{P}} [\mathbb{I}_A X_T]$. Hence we have proved that $X_t = e^{\frac{1}{2}t} e^{\tilde{B}_t}$, where \tilde{B}_t is a Q-BM.