EXAM STOCHASTIC DIFFERENTIAL EQUATIONS (3TU) May 30, 2011

Grading:
$$2 + (1+1\frac{1}{2}) + 1\frac{1}{2} + 2 + 2$$

1. Let γ_1 and γ_2 be independent standard normal random variables. Prove the identity

$$\mathbb{E}(1_{\{\gamma_1 \ge \gamma_2\}} \mid \gamma_1) = \Psi(\gamma_1),$$

where

$$\Psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-\frac{1}{2}t^2) \, dt.$$

2. Let $0 and suppose <math>(\eta_n)_{n \ge 1}$ is a sequence of independent, identically distributed random variables such that $\mathbb{P}(\eta_n = k) = (1 - p)^{k-1}p$ for all $k = 1, 2, \ldots$ For $n = 1, 2, \ldots$ let $\mathcal{F}_n := \sigma(\eta_1, \ldots, \eta_n)$ and

$$\xi_n := \exp(\eta_1 + \dots + \eta_n - na).$$

- a. For which values of $p \in (0,1)$ and $a \in \mathbb{R}$ is the sequence $(\xi_n)_{n\geq 1}$ a martingale with respect to the filtration $(\mathcal{F}_n)_{n\geq 1}$?
- b. For these values of p and a, show that the martingale $(\xi_n)_{n\geq 1}$ converges almost surely. Determine the almost sure limit (*Hint:* Consider the behaviour of $\eta_1 + \cdots + \eta_n$ as $n \to \infty$). Do we have convergence in L^1 ?
- 3. Let $(M_n)_{n\geq 0}$ be a nonnegative submartingale with respect to the filtration $(\mathcal{F}_n)_{n\geq 0}$ and let τ be a stopping time with respect to the same filtration such that $\tau < \infty$ almost surely. Prove that

$$\mathbb{E}M_{\tau} \leq \lim_{n \to \infty} \mathbb{E}M_n.$$

Interpret this in terms of your winnings in a gambling game.

4. For $0 < T < \infty$, define

$$G := \int_0^T B_t^2 \, dt.$$

Identify the process $g \in \mathcal{H}^2[0,T]$ such that

$$G = E[G] + \int_0^T g(t) \, dB_t \text{ a.s.}$$

Hint: Apply Itô's formula to $Y_t := tB_t^2$.

5. Let $(B_t)_{t\geq 0}$ be a standard Brownian motion and set $\mathcal{F}_t := \sigma(B_s; 0 \leq s \leq t)$, $t \geq 0$. Suppose $(X_t)_{0\leq t\leq T}$ satisfies the stochastic differential equation

$$dX_t = \mu X_t \, dt + \sigma X_t \, dB_t, \quad 0 \le t \le T,$$

$$X_0 = x_0,$$

and $(Y_t)_{0 \le t \le T}$ evolves deterministically as

$$\dot{Y}_t = rY_t, \quad 0 \le t \le T,$$
$$Y_0 = y_0.$$

where μ, σ, r, x_0 and y_0 are positive constants, and μ is greater than r. Using the Girsanov theorem, construct a probability measure under which $\tilde{X}_t \equiv \frac{X_t}{Y_t}, 0 \le t \le T$, is an \mathcal{F}_t -martingale.