
EXAM STOCHASTIC DIFFERENTIAL EQUATIONS (Mastermath)
June 3rd, 2013

1.

(a) State and prove the tower property of the conditional expectation. (6 p)

(b) Let f : R → R be convex and increasing. Let (Fn)n≥0 be a filtration. Let (Mn)n≥1 be a
submartingale such that for each n ≥ 1, Xn := f(Mn) ∈ L1(Ω). Show that (Xn)n≥1 is a
submartingale as well. (6 p)

answer

1a: Let (Ω,F ,P) be a probability space. Let X ∈ L1 and let H ⊆ G ⊆ F be σ-algebra’s. Then
E(E(X|G)|H) = E(X|H). Proof: Note that E(X|H) is H-measurable. Moreover, for all H ∈ H
one has ∫

H
E(X|H) dP =

∫
H
X dP =

∫
H
E(X|G) dP.

Now the result follows from the definition of the conditional expectation.

1b: E(Mn|Fn−1) ≥ Mn−1. Therefore, using conditional Jensen’s inequality and the fact that
f is increasing we find

E(Xn|Fn−1) ≥ f(E(Mn|Fn−1)) ≥ f(Mn−1) = Xn−1.

2. Assume (Xn)n≥1 is a sequence of independent random variables such that

E(Xn) = E(X3
n) = 0, E(X2

n) = 1 E(X4
n) = α.

Let Sn =

n∑
j=1

Xj and S0 = 0 and Fn = σ(X1, . . . , Xn) and define

Mn = S4
n − 6nS2

n + (3− α)n+ 3n2, n ≥ 0

(a) Show that (Mn)n≥0 is a martingale with respect to (Fn)n≥0. (7 p)
Hint: Write Sn = Sn−1 +Xn and use the identity

(s+ x)4 = s4 + 4s3x+ 6s2x2 + 4sx3 + x4.

Next assume P(Xj = 1) = P(Xj = −1) = 1/2 and note that α = 1. Let A ∈ N \ {0} and let
τ = inf{n ≥ 0 : |Sn| = A}. It is known that E(τ) = A2 and that τ has finite moments of all orders
and you may use both these facts below.

(b) Show that E(Mτ ) = 0. (7 p)
Hint: Use the stopping time theorem and dominated convergence.

(c) Derive that E(τ2) = 5A4−2A2

3 . (5 p)
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answer 2a Taking out what is known and using independence yields

E(Mn|Fn−1) = E(S4
n − 6nS2

n + (3− α)n+ 3n2|Fn−1)

= E(S4
n−1 + 4S3

n−1Xn + 6S2
n−1X

2
n + 4Sn−1X

3
n +X4

n|Fn−1)

− 6n
[
E(S2

n−1 + 2Sn−1Xn +X2
n|Fn−1)

]
+ (3− α)n+ 3n2

= S4
n−1 + 4S3

n−1E(Xn|Fn−1) + 6S2
n−1E(X2

n|Fn−1) + 4Sn−1E(X3
n|Fn−1) + E(X4

n|Fn−1)

− 6n
[
S2
n−1 + 2Sn−1E(Xn|Fn−1

) + E(X2
n|Fn−1)

]
+ (3− α)n+ 3n2

= S4
n−1 + 6S2

n−1 + α− 6nS2
n−1 − 6n+ (3− α)n+ 3n2 = Mn−1

2b: First note that τ is a stopping time, because {τ > n} = {|Sj | < A, 1 ≤ j ≤ n}. By the
stopping theorem it follows that (Mn∧τ )n≥0 is a martingale. Therefore, E(Mn∧τ ) = E(M0) = 0.
Given is that τ <∞ a.s. Therefore, |Sn∧τ | ≤ A. It follows that

|Mn∧τ | ≤ A4 − 6τA2 + |3− α|τ + 3τ2, n ≥ 0

Since the right-hand side is integrable and does not depend on n ≥ 0, the dominated convergence
theorem and limn→∞Mn∧τ = Mτ imply that

E(Mτ ) = lim
n→∞

E(Mn∧τ ) = 0.

2c: Since τ <∞ a.s., one has |Sτ | = A almost surely and by 2b we have

0 = E(Mτ = E(A4 − 6τA2 + (3− α)τ + 3τ2).

Therefore, using E(τ) = A2 we find that E(τ2) = 5A4−2A2

3 .

3. Assume (Zj)j≥1 are independent random variables with normal distribution and E(Zj) = 0
and E(Z2

j ) = 1. Let Sn =
∑n
j=1 Zj and let Xn = exp(Sn− nα), where α > 0 is a fixed parameter.

(a) Characterize those α > 0 for which one has lim
n→∞

Xn = 0 in L1. (6 p)

Hint: You may use the identity: E(eZn) = e1/2.

(b) Characterize those α > 0 for which one has lim
n→∞

Xn = 0 in probability. (6 p)

Answer

3a: By independence and E(eZj ) = e1/2 one has

E|Xn| = E(Xn) = E(exp(Sn − nα)) = e−n
α

E
( n∏
j=1

eZj
)

= e−n
α

n∏
j=1

E(eZj ) = e−n
α+n

2 .

Therefore, Xn → 0 in L1 if and only if −nα + n
2 →∞. This holds if and only if α ≥ 1.

3b. Recall that Xn → 0 in probability if and only if for every ε > 0 one has limn→∞ P(|Xn| >
ε) = 0. It suffices to consider ε ∈ (0, 1]. For such ε we have

P(|Xn| > ε) = P(Sn − nα > log(ε))

= P(Sn > log(ε) + nα)

= P
( Sn
n1/2

>
log(ε) + nα

n1/2

)
= Φ(p(α, n)),
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where p(α, n) = log(ε)+nα

n1/2 and Φ(x) = P(Z1 > x). Now limn→∞ p(α, n) =∞ if and only if α > 1/2.
If α ≤ 1/2, then p(α, n) ≤ 1) and hence Φ(p(α, n)) ≥ Φ(1). We can conclude that Xn → 0 in
probability if and only if α > 1/2.

4. Let (Bt)t≥0 be a Brownian motion and let a > 0.
Define the processes X and Y by Xt = a−1/2Bat and Yt = B2t −Bt.

(a) Prove or disprove: (Xt)t≥0 is a Brownian motion. (5 p)

(b) Prove or disprove: (Yt)t≥0 is a Brownian motion. (5 p)

(c) What are the mean and variance of
∫ T
0
t4Bt dBt. Explain your answer. (7 p)

answer
4a. Clearly, (Xt) is a Gaussian process and it has continuous paths again. Moreover, X0 = 0

and for all t > 0, E(Xt) = 0 and for all t ≥ s ≥ 0,

E(XtXs) = a−1E(BatBas) = a−1 min{at, as} = s.

Therefore, a result from the book/lectures shows that (Xt)t≥0 is a Brownian motion again.

4b. Note that

E(Y2−Y1)2 = E[B4−B2−(B2−B1)]2 = E(B4−B2)2−2E(B4−B2)(B2−B1)+E(B2−B1)2 = 2+1 = 3.

This should be 1 for Brownian motion. Thus (Yt)t≥0 cannot be a Brownian motion.

4c By the Ito isometry one has

E
∣∣∣ ∫ T

0

t4Bt dBt

∣∣∣2 =

∫ T

0

Et8B2
t dt =

∫ T

0

t9 dt =
1

10
T 10.

It follows that t4Bt defines a function in H2. Thus the Itô integral is a continuous time martingale

starting at zero. Therefore, E
( ∫ T

0
t4Bt dBt

)
= 0. Thus the mean is zero and variance 1

10T
10.

5. Let (Bt) be a standard Brownian motion defined on the (filtered) probability space (Ω,F (Ft), P ).
For fixed parameters µ ∈ R and σ > 0 consider the SDE

dXt = µdt+ σXtdBt, (∗)

with the initial condition X0 = x0 ∈ R.

(a) Consider the process Ht = e−σBt+
1
2σ

2t. Show that Ht satisfies (7 p)

dHt = −σHtdBt + σ2Htdt.

(b) Suppose Xt is a solution to the SDE (∗). Use the (Itô) product rule and (a) to show that (8 p)

d(HtXt) = µHtdt.

(c) Use (b) and the definition of H to show that the solution of (∗) is given by (5 p)

Xt = x0e
σBt− 1

2σ
2t + µ

∫ t

0

eσ(Bt−Bs)−
1
2σ

2(t−s)ds.
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answer

5a: Let f(x, t) = exp
(
−σx+ 1

2σ
2t
)
. Note that f ∈ C2,1 (R× R+) with

∂f

∂x
(x, t) = −σf(x, t),

∂2f

∂x2
(x, t) = σ2f(x, t), and

∂f

∂t
(x, t) =

1

2
σ2f(x, t).

Applying Itô formula to f(Bt, t) = Ht then leads to

dHt = df(Bt, t) =
∂f

∂t
(Bt, t)dt+ fx

∂f

∂x
(Bt, t)dBt +

1

2

∂2f

∂x2
(Bt, t)dt

=
1

2
σ2f(Bt, t)dt− σf(Bt, t)dBt +

1

2
σ2f(Bt, t)dt

= −σHtdBt + σ2Htdt,

which was to be proven.

5b: Let Xt be the solution to (∗). Itô product rule (in box calculus notation) implies that

d(HtXt) = XtdHt +HtdXt + dHt · dXt.

Using (a) and (∗) we then have

d(HtXt) = Xt(−σHtdBt + σ2Htdt) +Ht(µdt+ σXtdBt) + dHt · dXt

= σ2XtHtdt+ µHtdt+ (−σHtdBt + σ2Htdt) · (µdt+ σXtdBt)

= σ2XtHtdt+ µHtdt− σ2XtHtdt

(since dBt · dBt = dt and dBt · dt = dt · dBt = dt · dt = 0)

= µHtdt.

5c: Using the integral form of d(HtXt) = µHtdt we have

HtXt = H0X0 +

∫ t

0

HsXsds.

Using H0 = 1 and X0 = x0 we get

Xt = x0H
−1
t +H−1t

∫ t

0

HsXsds = x0H
−1
t +

∫ t

0

H−1t HsXsds.

The result then follows from the definition of Ht.

6. Let (Bt)t≥0 be a standard Brownian motion defined on the probability space (Ω,F , P ). Set
Ft := σ(Bs ; 0 ≤ s ≤ t), t ≥ 0. Suppose (Xt)0≤t≤T satisfies the stochastic differential equation

dXt = rXt dt+ σXt dBt, 0 ≤ t ≤ T,
X0 = x0.

where r, σ and x0 are positive constants. Using the Girsanov theorem, construct a probability
measure under which Xt is an Ft-martingale. (10 p)

answer

For Xt to be a martingale we necessarily need to have the drift to be zero.
Note that θt = rXt−0

σXt
= r

σ , being a finite constant, is bounded. We can then use the Girsanov

theorem to swap the drift by considering the new measure Q given by dQ
dP = MT , where

Mt = exp

(
−
∫ t

0

θsdBs −
1

2

∫ t

0

θ2sds

)
= exp

(
− r
σ
Bt −

1

2

r2

σ2
t

)
.

Then under Q, B̃t = Bt + r
σ t is a BM and dXt = σXtdB̃t.

This implies that (under Q) Xt = exp
(
σB̃t − 1

2σ
2t
)

, which is a Martingale.
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