EXAM STOCHASTIC DIFFERENTIAL EQUATIONS (Mastermath)

June 3rd, 2013
1.
(a) State and prove the tower property of the conditional expectation.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be convex and increasing. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ be a filtration. Let $\left(M_{n}\right)_{n \geq 1}$ be a submartingale such that for each $n \geq 1, X_{n}:=f\left(M_{n}\right) \in L^{1}(\Omega)$. Show that $\left(X_{n}\right)_{n \geq 1}$ is a submartingale as well.

answer

1a: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $X \in L^{1}$ and let $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{F}$ be σ-algebra's. Then $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H})=\mathbb{E}(X \mid \mathcal{H})$. Proof: Note that $\mathbb{E}(X \mid \mathcal{H})$ is H-measurable. Moreover, for all $H \in \mathcal{H}$ one has

$$
\int_{\mathcal{H}} \mathbb{E}(X \mid \mathcal{H}) d \mathbb{P}=\int_{\mathcal{H}} X d \mathbb{P}=\int_{\mathcal{H}} \mathbb{E}(X \mid \mathcal{G}) d \mathbb{P}
$$

Now the result follows from the definition of the conditional expectation.
$1 \mathrm{~b}: \mathbb{E}\left(M_{n} \mid \mathcal{F}_{n-1}\right) \geq M_{n-1}$. Therefore, using conditional Jensen's inequality and the fact that f is increasing we find

$$
\mathbb{E}\left(X_{n} \mid \mathcal{F}_{n-1}\right) \geq f\left(\mathbb{E}\left(M_{n} \mid \mathcal{F}_{n-1}\right)\right) \geq f\left(M_{n-1}\right)=X_{n-1}
$$

2. Assume $\left(X_{n}\right)_{n \geq 1}$ is a sequence of independent random variables such that

$$
\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(X_{n}^{3}\right)=0, \quad \mathbb{E}\left(X_{n}^{2}\right)=1 \quad \mathbb{E}\left(X_{n}^{4}\right)=\alpha
$$

Let $S_{n}=\sum_{j=1}^{n} X_{j}$ and $S_{0}=0$ and $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ and define

$$
\begin{equation*}
M_{n}=S_{n}^{4}-6 n S_{n}^{2}+(3-\alpha) n+3 n^{2}, \quad n \geq 0 \tag{7p}
\end{equation*}
$$

(a) Show that $\left(M_{n}\right)_{n \geq 0}$ is a martingale with respect to $\left(\mathcal{F}_{n}\right)_{n \geq 0}$.

Hint: Write $S_{n}=S_{n-1}+X_{n}$ and use the identity

$$
(s+x)^{4}=s^{4}+4 s^{3} x+6 s^{2} x^{2}+4 s x^{3}+x^{4} .
$$

Next assume $\mathbb{P}\left(X_{j}=1\right)=\mathbb{P}\left(X_{j}=-1\right)=1 / 2$ and note that $\alpha=1$. Let $A \in \mathbb{N} \backslash\{0\}$ and let $\tau=\inf \left\{n \geq 0:\left|S_{n}\right|=A\right\}$. It is known that $\mathbb{E}(\tau)=A^{2}$ and that τ has finite moments of all orders and you may use both these facts below.
(b) Show that $\mathbb{E}\left(M_{\tau}\right)=0$.

Hint: Use the stopping time theorem and dominated convergence.
(c) Derive that $\mathbb{E}\left(\tau^{2}\right)=\frac{5 A^{4}-2 A^{2}}{3}$.
answer 2a Taking out what is known and using independence yields

$$
\begin{aligned}
\mathbb{E}\left(M_{n} \mid F_{n-1}\right)= & \mathbb{E}\left(S_{n}^{4}-6 n S_{n}^{2}+(3-\alpha) n+3 n^{2} \mid \mathcal{F}_{n-1}\right) \\
= & \mathbb{E}\left(S_{n-1}^{4}+4 S_{n-1}^{3} X_{n}+6 S_{n-1}^{2} X_{n}^{2}+4 S_{n-1} X_{n}^{3}+X_{n}^{4} \mid \mathcal{F}_{n-1}\right) \\
& -6 n\left[\mathbb{E}\left(S_{n-1}^{2}+2 S_{n-1} X_{n}+X_{n}^{2} \mid \mathcal{F}_{n-1}\right)\right]+(3-\alpha) n+3 n^{2} \\
= & S_{n-1}^{4}+4 S_{n-1}^{3} \mathbb{E}\left(X_{n} \mid \mathcal{F}_{n-1}\right)+6 S_{n-1}^{2} \mathbb{E}\left(X_{n}^{2} \mid \mathcal{F}_{n-1}\right)+4 S_{n-1} \mathbb{E}\left(X_{n}^{3} \mid \mathcal{F}_{n-1}\right)+\mathbb{E}\left(X_{n}^{4} \mid \mathcal{F}_{n-1}\right) \\
& -6 n\left[S_{n-1}^{2}+2 S_{n-1} \mathbb{E}\left(X_{n} \mid \mathcal{F}_{n-1}\right)+\mathbb{E}\left(X_{n}^{2} \mid \mathcal{F}_{n-1}\right)\right]+(3-\alpha) n+3 n^{2} \\
= & S_{n-1}^{4}+6 S_{n-1}^{2}+\alpha-6 n S_{n-1}^{2}-6 n+(3-\alpha) n+3 n^{2}=M_{n-1}
\end{aligned}
$$

2b: First note that τ is a stopping time, because $\{\tau>n\}=\left\{\left|S_{j}\right|<A, 1 \leq j \leq n\right\}$. By the stopping theorem it follows that $\left(M_{n \wedge \tau}\right)_{n \geq 0}$ is a martingale. Therefore, $\mathbb{E}\left(M_{n \wedge \tau}\right)=\mathbb{E}\left(M_{0}\right)=0$. Given is that $\tau<\infty$ a.s. Therefore, $\left|S_{n \wedge \tau}\right| \leq A$. It follows that

$$
\left|M_{n \wedge \tau}\right| \leq A^{4}-6 \tau A^{2}+|3-\alpha| \tau+3 \tau^{2}, \quad n \geq 0
$$

Since the right-hand side is integrable and does not depend on $n \geq 0$, the dominated convergence theorem and $\lim _{n \rightarrow \infty} M_{n \wedge \tau}=M_{\tau}$ imply that

$$
\mathbb{E}\left(M_{\tau}\right)=\lim _{n \rightarrow \infty} E\left(M_{n \wedge \tau}\right)=0
$$

2c: Since $\tau<\infty$ a.s., one has $\left|S_{\tau}\right|=A$ almost surely and by 2b we have

$$
0=\mathbb{E}\left(M_{\tau}=\mathbb{E}\left(A^{4}-6 \tau A^{2}+(3-\alpha) \tau+3 \tau^{2}\right) .\right.
$$

Therefore, using $\mathbb{E}(\tau)=A^{2}$ we find that $\mathbb{E}\left(\tau^{2}\right)=\frac{5 A^{4}-2 A^{2}}{3}$.
3. Assume $\left(Z_{j}\right)_{j \geq 1}$ are independent random variables with normal distribution and $\mathbb{E}\left(Z_{j}\right)=0$ and $\mathbb{E}\left(Z_{j}^{2}\right)=1$. Let $S_{n}=\sum_{j=1}^{n} Z_{j}$ and let $X_{n}=\exp \left(S_{n}-n^{\alpha}\right)$, where $\alpha>0$ is a fixed parameter.
(a) Characterize those $\alpha>0$ for which one has $\lim _{n \rightarrow \infty} X_{n}=0$ in L^{1}.

Hint: You may use the identity: $\mathbb{E}\left(e^{Z_{n}}\right)=e^{1 / 2}$.
(b) Characterize those $\alpha>0$ for which one has $\lim _{n \rightarrow \infty} X_{n}=0$ in probability.

Answer

3a: By independence and $\mathbb{E}\left(e^{Z_{j}}\right)=e^{1 / 2}$ one has

$$
\mathbb{E}\left|X_{n}\right|=\mathbb{E}\left(X_{n}\right)=\mathbb{E}\left(\exp \left(S_{n}-n^{\alpha}\right)\right)=e^{-n^{\alpha}} \mathbb{E}\left(\prod_{j=1}^{n} e^{Z_{j}}\right)=e^{-n^{\alpha}} \prod_{j=1}^{n} \mathbb{E}\left(e^{Z_{j}}\right)=e^{-n^{\alpha}+\frac{n}{2}}
$$

Therefore, $X_{n} \rightarrow 0$ in L^{1} if and only if $-n^{\alpha}+\frac{n}{2} \rightarrow \infty$. This holds if and only if $\alpha \geq 1$.
3b. Recall that $X_{n} \rightarrow 0$ in probability if and only if for every $\varepsilon>0$ one has $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}\right|>\right.$ $\varepsilon)=0$. It suffices to consider $\varepsilon \in(0,1]$. For such ε we have

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{n}\right|>\varepsilon\right) & =\mathbb{P}\left(S_{n}-n^{\alpha}>\log (\varepsilon)\right) \\
& =\mathbb{P}\left(S_{n}>\log (\varepsilon)+n^{\alpha}\right) \\
& =\mathbb{P}\left(\frac{S_{n}}{n^{1 / 2}}>\frac{\log (\varepsilon)+n^{\alpha}}{n^{1 / 2}}\right) \\
& =\Phi(p(\alpha, n)),
\end{aligned}
$$

where $p(\alpha, n)=\frac{\log (\varepsilon)+n^{\alpha}}{n^{1 / 2}}$ and $\Phi(x)=\mathbb{P}\left(Z_{1}>x\right)$. Now $\lim _{n \rightarrow \infty} p(\alpha, n)=\infty$ if and only if $\alpha>1 / 2$. If $\alpha \leq 1 / 2$, then $p(\alpha, n) \leq 1)$ and hence $\Phi(p(\alpha, n)) \geq \Phi(1)$. We can conclude that $X_{n} \rightarrow 0$ in probability if and only if $\alpha>1 / 2$.
4. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and let $a>0$.

Define the processes X and Y by $X_{t}=a^{-1 / 2} B_{a t}$ and $Y_{t}=B_{2 t}-B_{t}$.
(a) Prove or disprove: $\left(X_{t}\right)_{t \geq 0}$ is a Brownian motion.
(b) Prove or disprove: $\left(Y_{t}\right)_{t \geq 0}$ is a Brownian motion.
(c) What are the mean and variance of $\int_{0}^{T} t^{4} B_{t} d B_{t}$. Explain your answer.

answer

4a. Clearly, $\left(X_{t}\right)$ is a Gaussian process and it has continuous paths again. Moreover, $X_{0}=0$ and for all $t>0, \mathbb{E}\left(X_{t}\right)=0$ and for all $t \geq s \geq 0$,

$$
\mathbb{E}\left(X_{t} X_{s}\right)=a^{-1} \mathbb{E}\left(B_{a t} B_{a s}\right)=a^{-1} \min \{a t, a s\}=s
$$

Therefore, a result from the book/lectures shows that $\left(X_{t}\right)_{t \geq 0}$ is a Brownian motion again.
4b. Note that

$$
\mathbb{E}\left(Y_{2}-Y_{1}\right)^{2}=\mathbb{E}\left[B_{4}-B_{2}-\left(B_{2}-B_{1}\right)\right]^{2}=\mathbb{E}\left(B_{4}-B_{2}\right)^{2}-2 \mathbb{E}\left(B_{4}-B_{2}\right)\left(B_{2}-B_{1}\right)+\mathbb{E}\left(B_{2}-B_{1}\right)^{2}=2+1=3
$$

This should be 1 for Brownian motion. Thus $\left(Y_{t}\right)_{t \geq 0}$ cannot be a Brownian motion.
4 c By the Ito isometry one has

$$
\mathbb{E}\left|\int_{0}^{T} t^{4} B_{t} d B_{t}\right|^{2}=\int_{0}^{T} \mathbb{E} t^{8} B_{t}^{2} d t=\int_{0}^{T} t^{9} d t=\frac{1}{10} T^{10}
$$

It follows that $t^{4} B_{t}$ defines a function in \mathcal{H}^{2}. Thus the Itô integral is a continuous time martingale starting at zero. Therefore, $\mathbb{E}\left(\int_{0}^{T} t^{4} B_{t} d B_{t}\right)=0$. Thus the mean is zero and variance $\frac{1}{10} T^{10}$.
5. Let $\left(B_{t}\right)$ be a standard Brownian motion defined on the (filtered) probability space $\left(\Omega, \mathcal{F}\left(\mathcal{F}_{t}\right), P\right)$. For fixed parameters $\mu \in \mathbb{R}$ and $\sigma>0$ consider the SDE

$$
\begin{equation*}
d X_{t}=\mu d t+\sigma X_{t} d B_{t} \tag{*}
\end{equation*}
$$

with the initial condition $X_{0}=x_{0} \in \mathbb{R}$.
(a) Consider the process $H_{t}=e^{-\sigma B_{t}+\frac{1}{2} \sigma^{2} t}$. Show that H_{t} satisfies

$$
\begin{equation*}
d H_{t}=-\sigma H_{t} d B_{t}+\sigma^{2} H_{t} d t \tag{7p}
\end{equation*}
$$

(b) Suppose X_{t} is a solution to the $\operatorname{SDE}(*)$. Use the (Itô) product rule and (a) to show that

$$
\begin{equation*}
d\left(H_{t} X_{t}\right)=\mu H_{t} d t \tag{8p}
\end{equation*}
$$

(c) Use (b) and the definition of H to show that the solution of $(*)$ is given by

$$
X_{t}=x_{0} e^{\sigma B_{t}-\frac{1}{2} \sigma^{2} t}+\mu \int_{0}^{t} e^{\sigma\left(B_{t}-B_{s}\right)-\frac{1}{2} \sigma^{2}(t-s)} d s
$$

answer

5a: Let $f(x, t)=\exp \left(-\sigma x+\frac{1}{2} \sigma^{2} t\right)$. Note that $f \in C^{2,1}\left(\mathbb{R} \times \mathbb{R}^{+}\right)$with

$$
\frac{\partial f}{\partial x}(x, t)=-\sigma f(x, t), \quad \frac{\partial^{2} f}{\partial x^{2}}(x, t)=\sigma^{2} f(x, t), \quad \text { and } \quad \frac{\partial f}{\partial t}(x, t)=\frac{1}{2} \sigma^{2} f(x, t) .
$$

Applying Itô formula to $f\left(B_{t}, t\right)=H_{t}$ then leads to

$$
\begin{aligned}
d H_{t} & =d f\left(B_{t}, t\right)=\frac{\partial f}{\partial t}\left(B_{t}, t\right) d t+f_{x} \frac{\partial f}{\partial x}\left(B_{t}, t\right) d B_{t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(B_{t}, t\right) d t \\
& =\frac{1}{2} \sigma^{2} f\left(B_{t}, t\right) d t-\sigma f\left(B_{t}, t\right) d B_{t}+\frac{1}{2} \sigma^{2} f\left(B_{t}, t\right) d t \\
& =-\sigma H_{t} d B_{t}+\sigma^{2} H_{t} d t
\end{aligned}
$$

which was to be proven.
5 b: Let X_{t} be the solution to (*). Itô product rule (in box calculus notation) implies that

$$
d\left(H_{t} X_{t}\right)=X_{t} d H_{t}+H_{t} d X_{t}+d H_{t} \cdot d X_{t} .
$$

Using (a) and (*) we then have

$$
\begin{aligned}
d\left(H_{t} X_{t}\right)= & X_{t}\left(-\sigma H_{t} d B_{t}+\sigma^{2} H_{t} d t\right)+H_{t}\left(\mu d t+\sigma X_{t} d B_{t}\right)+d H_{t} \cdot d X_{t} \\
= & \sigma^{2} X_{t} H_{t} d t+\mu H_{t} d t+\left(-\sigma H_{t} d B_{t}+\sigma^{2} H_{t} d t\right) \cdot\left(\mu d t+\sigma X_{t} d B_{t}\right) \\
= & \sigma^{2} X_{t} H_{t} d t+\mu H_{t} d t-\sigma^{2} X_{t} H_{t} d t \\
& \left.\quad \quad \quad \text { (since } d B_{t} \cdot d B_{t}=d t \text { and } d B_{t} \cdot d t=d t \cdot d B_{t}=d t \cdot d t=0\right) \\
= & \mu H_{t} d t . \quad
\end{aligned}
$$

5c: Using the integral form of $d\left(H_{t} X_{t}\right)=\mu H_{t} d t$ we have

$$
H_{t} X_{t}=H_{0} X_{0}+\int_{0}^{t} H_{s} X_{s} d s
$$

Using $H_{0}=1$ and $X_{0}=x_{0}$ we get

$$
X_{t}=x_{0} H_{t}^{-1}+H_{t}^{-1} \int_{0}^{t} H_{s} X_{s} d s=x_{0} H_{t}^{-1}+\int_{0}^{t} H_{t}^{-1} H_{s} X_{s} d s
$$

The result then follows from the definition of H_{t}.
6. Let $\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion defined on the probability space (Ω, \mathcal{F}, P). Set $\mathcal{F}_{t}:=\sigma\left(B_{s} ; \overline{0} \leq s \leq t\right), t \geq 0$. Suppose $\left(X_{t}\right)_{0 \leq t \leq T}$ satisfies the stochastic differential equation

$$
\begin{aligned}
d X_{t} & =r X_{t} d t+\sigma X_{t} d B_{t}, \quad 0 \leq t \leq T \\
X_{0} & =x_{0}
\end{aligned}
$$

where r, σ and x_{0} are positive constants. Using the Girsanov theorem, construct a probability measure under which X_{t} is an \mathcal{F}_{t}-martingale.

answer

For X_{t} to be a martingale we necessarily need to have the drift to be zero.
Note that $\theta_{t}=\frac{r X_{t}-0}{\sigma X_{t}}=\frac{r}{\sigma}$, being a finite constant, is bounded. We can then use the Girsanov theorem to swap the drift by considering the new measure Q given by $\frac{d Q}{d P}=M_{T}$, where

$$
M_{t}=\exp \left(-\int_{0}^{t} \theta_{s} d B_{s}-\frac{1}{2} \int_{0}^{t} \theta_{s}^{2} d s\right)=\exp \left(-\frac{r}{\sigma} B_{t}-\frac{1}{2} \frac{r^{2}}{\sigma^{2}} t\right)
$$

Then under $Q, \tilde{B}_{t}=B_{t}+\frac{r}{\sigma} t$ is a BM and $d X_{t}=\sigma X_{t} d \tilde{B}_{t}$.
This implies that (under Q) $X_{t}=\exp \left(\sigma \tilde{B}_{t}-\frac{1}{2} \sigma^{2} t\right)$, which is a Martingale.

