Exam Vector Calculus for Applied Physics/Applied Mathematics Bachelor Module 4

Codes 201300164, 201400535 May 22, 2017, 8.45-11.45

- All answers must be motivated and clearly formulated.
- The use of a calculator is not allowed.
- \times 1. Given the planes: $S_1: x+2y+z=2$ and $S_2: 3x-y-2z=4$.
 - κ (a) Calculate the parametrization $\mathbf{r}_1(t)$ of the intersection line of the planes S_1 and S_2 .
 - \succ Calculate the cosine of the angle between the planes S_1 and S_2 .

Given the curves: $\mathbf{r}_2(t) = (t, t^2, t^3)$ and $\mathbf{r}_3(t) = (\sin(\pi t/2), (2-t)^2, 2t^2 - 1)$.

- \sim Calculate a vector that is normal to the tangent vectors of the curves \mathbf{r}_2 and \mathbf{r}_3 at the point of intersection (1,1,1).
- 2. Given the functions

$$z(x,y) = \ln\left(\frac{1}{1+x+2y}\right), \quad x(s,t) = e^{st}, \quad y(t) = \cos t.$$

- \checkmark a Calculate $\frac{\partial z}{\partial s}$.
- \checkmark Galculate $\frac{\partial^2 z}{\partial t \partial s}$.

Given the function $f(x,y) = \sqrt{1 + \exp(x - 2y - 3)}$, with exp the exponential function.

- c. Calculate the Taylorseries of f(x,y) around the point (x,y)=(1,-1) up to and including the linear terms.
- d. Calculate the directional derivative of f(x, y) at (x, y) = (1, -1) in the direction of the vector $\mathbf{u} = (\sqrt{2}, \sqrt{2})$.
- 3. Calculate the integral

$$\iint_{R} \sqrt{2x(y-2x)} dA,$$

where R is the parallelogram in the xy-plane with vertices (0,0), (0,1), (2,4), and (2,5).

(a) Calculate the integral using the transformation T: x = 2u, y = 4u + v.

- \bigcirc Calculate the integral directly in the x-y plane, thus without using a coordinate transformation.
- 4. Calculate the integral

$$\iint_{S} \sqrt{x^2 + y^2} dS,$$

with S the surface given by the parameterization

$$\mathbf{r}(u, v) = u \cos v \mathbf{i} + u \sin v \mathbf{j} + \frac{2}{3} v^{\frac{3}{2}} \mathbf{k}$$
 $0 \le u \le 1, \ 0 \le v \le 1.$

(5.) Compute the integral

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}, = \int_{S} \mathbf{F} \cdot d\mathbf{r}$$

with the vector field **F** given by

$$\mathbf{F}(x, y, z) = x^2 y z \mathbf{i} + y z^2 \mathbf{j} + z x \mathbf{k}.$$

SS F & N dS = SSSdivFdp

The surface S is that part of the sphere $x^2 + y^2 + z^2 = 5$ the lies above the plane the plane z = 1. The surface S has a normal vector with a positive component in the z-direction of the Cartesian coordinate system.

∠ 6. Investigate if the following series converge or diverge

(b)
$$\sum_{n=1}^{\infty} \frac{n+9^n}{n+10^n}$$

Grading

1: 6	2: 6	3: 5	4: 6	5: 7	6: 6
1a: 2	2a: 1	3a: 3			6a: 2
1b: 2	2b: 2	3b: 2			6b: 2
1c: 2	2c: 2			4),	6c: 2
	2d: 1			0	*

total 36+4=40 points