Exam Vector Calculus Module 3 Applied Physics and Applied Mathematics Bachelor

Codes 201700164-201800137 March 1, 2019, 8.45-10.30

- · All answers must be motivated and clearly formulated.
- The use of a calculator is not allowed.
- 1. Given the contour $C = C_1 \cup C_2 \cup C_3$ with
 - i. C_1 : line segment from (2,0) to (0,0).
 - ii. C_2 : line segment from (0,0) to $(\sqrt{2}, -\sqrt{2})$.
 - iii. C_3 : clockwise circular arc with radius 2 from $(\sqrt{2}, -\sqrt{2})$ to (2,0).

Given the vector field $\mathbf{F}(x, y) = F_1(x, y)\mathbf{i} + F_2(x, y)\mathbf{j}$ with

$$F_1(x, y) = \log(\sqrt{x^2 + y^2}),$$

 $F_2(x, y) = \frac{1}{(x^2 + y^2)^{\frac{1}{4}}}.$

- a. Is F a conservative field? Motivate your answer.
- b. Calculate $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$.
- c. Use Greens' theorem to calculate $\oint_C F_1(x, y) dx + F_2(x, y) dy$.
- 2. Given the domain D with

$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 4, \ x \le 0, y \ge 0, z \ge 0\}.$$

At the surface S of the domain D the unit outward normal vector is denoted as $\hat{\mathbf{N}}$. Given the vector field

$$\mathbf{F}(x,y,z) = x y z \mathbf{i} + x y z \mathbf{k}.$$

- a. Calculate $\iint_S \mathbf{F} \cdot \hat{\mathbf{N}} dS$ using Gauss' theorem.
- b. Use spherical coordinates to calculate $\iint_S \mathbf{F} \cdot \hat{\mathbf{N}} dS$ without using Gauss' theorem.

3. Given the surface S with

$$S = \{(x, y, z) \in \mathbb{R}^3 : x = \sqrt{y^2 + z^2}, 1 < x < 2\}.$$

At the surface S the unit normal vector $\hat{\mathbf{N}}$ has a negative x-component. Given the vector field

$$\mathbf{F}(x, y, z) = z y \mathbf{i} + y^2 \mathbf{j} + \exp(x^2) \mathbf{k}.$$

- a. Calculate curl F.
- b. Calculate $\iint_{S} \mathbf{curl} \, \mathbf{F} \cdot \hat{\mathbf{N}} dS$ using Stokes' theorem.

Grading

1: 11	2: 9	3: 7
1a: 2	2a: 4	3a: 2
1b: 4	2b: 5	3b: 5
1c: 5		

total 27+3=30 points