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Instructions
You have 2 hours to complete the test. Clearly indicate your name and student number on every sheet
that you hand in.

You may use a hand-written formula sheet containing maximum 10 equations. This sheet must be
handed in together with your answers.

Before answering the questions, read all of them and start with the one you find easiest.

The amount of points to be obtained with each question is indicated next to the question number.

Problem 1 (15pts/100)
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Above are three situations with various numbers of charges and a metal ball (grey sphere in the
middle). Copy the 3 sketches and add the electric field lines appropriate for the situation. Take care
to be consistent in the number of field-lines, indicate the direction of the field-lines and make sure
that the scale of the drawing is such that we can judge the field close to the charges but also the field
far away from the charges and at the middle distance (you can use multiple sketches if you prefer).

Problem 2 (20pts/100) Below you find eight statements. For each of them, indicate whether the

~statement is ‘true’ (T) or ‘not true” (NT). Also include a brief argument why you agree or not (minimum

1 & maximum 5 lines per statement). Read the statements carefully, each word may be important!

A (closed) contour integral of the electric field is always zero.
A spherical shell carries a uniformly distributed positive surface charge. A positive point charge
placed inside the shell will experience a force toward the center.

¢.  When one doubles the charge of (each of) two point charges, the force between them quadruples.
The electric flux trough an equipotential surface is always zero.
The charge distribution of a conducting sphere is always spherically symmetric, irrespective of its
environment.

f. A dielectric that is placed in an inhomogeneous electric field will experience a force in the
direction of the divergence of the field.

g. The potential difference between the plates of a disconnected capacitor decreases when one
introduces a dielectric in between the plates.

h. A continuous D across an interface while E is discontinuous implies the presence of free charge.
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Problem 3 (15pt/100)

1. Consider a homogenously charged ring with radius R and charge density A (C/m), as below
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a. Show that the electric field E on the z-axis (at a perpendicular distance z above the midpoint of

the circle) can be written as:

RA 7 .
E(z) = 2. (Rz +z2)m e

b. Use this result to calculate the electric field along the z-axis resulting from a cylinder of radius R
and length R centred on the z-axis around the origin with the axis of the cylinder aligned along the

Z-axis.

Problem 4 (25pt/100)

On the right is sideview of a capacitor filled with two different
materials. The capacitor is charged to a voltage Vo by a voltage
source.

a. Calculate the free surface charge density of for the case that the
space between the capacitor plates is empty (no materials).
Express your answer in gg, Vg and d.

Vv
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b. Calculate the free surface charge density of for the case that the space between the capacitor plates
is filled with the two different materials. Express your answer in g, €0, Vo and d.

c. Calculate the net bound surface charge density o, between the two materials. Express your answer

in &, €0, Voand d.

Problem 5 (25pt/100)

A sphere of radius R carries a charge Q , distributed homogeneously throughout its volume.

a. Calculate the total work Uit that was needed to put this charge in the sphere.
b. Calculate the energy Uinsice associated with the electric field inside the sphere.
c. Calculate the energy Usutsise @ssociated with the electric field outside the sphere.
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VECTOR DERIVATIVES
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VECTOR IDENTITIES

Triple Products

(1) AABxC)=B-(CxA)=C-(AxB)

(2) AxBxC=BA-C)~C(A-B)
Product Rules

(3) Vifg)=f(Vg)+3s(Vf)

4) VAB=Ax(VxB+Bx(VxA)+A - V)B+(B-V)A

(3) V- (fA=Ff(V-A)+A-(V])

6) V- (AxB)=B- (VxA)-A-(VxB)

D Vx(fA) = f(VxA)—Ax (V)
B) VxAxB)=(B-V)A-(A-V)B4+A(V-B)—-B(V-A)
Second Derivatives
L)) V. (VxA=0
(10) Vx(V)=

(1) Vx(VxA)=V(V.A)- VA

FUNDAMENTAL THEOREMS

Gradient Theorem:  [P(V ) -dl = f(b) - f(a)
Divergence Theorem : [(V-A)dr ={A-da

Curl Theorem : J(VxA)-da=fA.dl



FUNDAMENTAL CONSTANTS
€@ = 8.85x10712C2/Nm? (permittivity of free space)
uo = 4m x 1077 N/A? (permeability of free space)
c = 3.00x10%m/s (speed of light)
e = 160x10"1°C (charge of the electron)
m = 9.11x10"3kg (mass of the electron)
SPHERICAL AND CYLINDRICAL COORDINATES
Spherical
x = rsinfcos¢ X = sinfcos¢i+cosfcosgd —sinpo
y = rsinfsing § = sin@sin ¢F+cosBsin @8 +cospd
z = rcosf i = cosfr—sinf@
R m I = sinfcos¢X+sinfsingy+cosfz
0 = tan" (/x2+y2/2) 6 = cosfcospk+cosfsing§ —sin 02
¢ = tan~ (y/x) ¢ —singX+cosg§
Cylindrical .
x = scos¢ X = cos¢p8§—sin pg
y = ssing § = singS+cospd
zZ = 2 z = Z
s = JxZ4y? § = cospX+sin ¢y
¢ = tanl(y/x) ¢ = —singpX+cospd
g = Z Z = 2

Standaardintegralen.
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