Test 1 for Probability Theory (Module Signals and Uncertainty, 202001342) Monday March 6, 2023, 8.45 - 10.15 hour.

This test consists of 4 problems.
Use proper notation and motivate all answers.
Using a calculator is *not* allowed.

- 1. Consider a probability space (S, P).
 - a. The first two axioms of Kolmogorov are given by (i) $P(E) \geq 0$ for any event $E \subset S$ and (ii) P(S) = 1. Give the third axiom (iii), and prove that (i)–(iii) imply that $P(E) \leq 1$ for any event $E \subset S$.
 - b. Now assume S is a finite set and let P be given by the Laplace definition. Show that P satisfies (i) and (ii).
- 2. We choose a person at random from the Dutch population and measure the length X of the person. Assume the probabilities of the person being male or female are both 0.5. The length of a male person is assumed to be normally distributed with expectation μ and standard deviation σ , while the length of a woman is normally distributed with expectation ν and standard deviation τ . (Hint: define a suitable event to indicate whether the chosen person is male or female.)
 - a. Give an expression for $P(X \le x)$ in terms of Φ and the given parameters, where Φ is the distribution function of a standard normal random variable Z.
 - b. Give an expression (again in terms of Φ and the given parameters) for the probability that a woman was chosen if we already know that the length of the person was not more than x.
 - c. What is the distribution of 2Y 10 where Y is the weight of a male person?
- 3. A second-hand car dealer has 20 cars for sale, five of which are reliable (and 15 not). We pick two cars at random for a test drive. Let X be the number of reliable cars in our pick.
 - a. Give the range S_X and the probability mass function of X.
 - b. Sketch the form of the distribution function of X, with relevant values on the axes. (If you did not answer a. above, then assume that X takes values 0, 1 and 2 with probabilities 21/39, 16/39 and 2/39 respectively).
 - c. Can the distribution of X be reasonably approximated by a Binomial distribution with n=2 and p=1/4? Argue why (not); no computations are needed.
- 4. The random variable X has an exponential distribution with parameter 3.
 - a. Determine the probability $P(6X > X^2 + 8)$.
 - b. Determine the density of the random variable Y given by $Y = e^{-X}$.
 - c. Determine $E[e^{-X}]$.

Norm: (grade = total/3 + 1)

1		2			3			4			Total
a	b	a	b	С	a	b	С	a	b	c	
3	2	3	2	2	3	2	2	3	3	2	27