UNIVERSITY OF TWENTE

Department of Electrical Engineering, Mathematics and Computer Science
Exam Signals and Transforms on Thursday March 30, 2017, 8.45-10.15 hours.
The solutions of the exercises should be clearly formulated. Moreover, in all cases you should motivate your answer!
You are not allowed to use a calculator. Besides pen and paper, the only thing you are allowed to use is one handwritten, singe-sided, A4-sized page of personal notes.

1. Let $f(t)$ be the 4-periodic function which satisfies:

$$
f(t)=t \operatorname{rect}(t), \quad \text { for } t \in[-2,2)
$$

a) Sketch the function $f(t)$ for $t \in[-5,5]$.
b) Show that the complex Fourier coefficients are equal to:

$$
\begin{aligned}
f_{2 m+1} & =-\frac{2 i}{(2 m+1)^{2} \pi^{2}}(-1)^{m} \\
f_{2 m} & =\left\{\begin{array}{ll}
\frac{i}{2 m \pi}(-1)^{m} & m \neq 0 \\
0 & m=0
\end{array} \quad\right. \text { \& Something Urary!. }
\end{aligned}
$$

c) Determine the real Fourier series for $f(t)$.
d) Determine the generalized derivative of the function f.
2. Determine the convolution of $f(t)=\operatorname{rect}_{2}(t+1)$ and $g(t)=\sin (\pi t) \mathbb{1}(t)$ without the use of Fourier or Laplace transformations.
3. Consider the space $C[-1,1]$ of continuous functions on the interval $[-1,1]$.
a) Consider the sequence of functions $\left\{f_{1}, f_{2}, \ldots\right\}$ with:

$$
f_{n}(t)=n^{1 / 3} t^{n}
$$

Verify whether this sequence of functions form a Cauchy sequence or not.
Consider the linear mapping $\mathcal{A}: C[-1,1] \rightarrow \mathcal{C}[-1,1]$ with $\mathcal{A}(f)=g$ where

$$
g(t)=\mathbb{1}(t) f(t)
$$

b) Determine the null space of \mathcal{A}. In other words, determine $\operatorname{ker}(\mathcal{A})$.
c) Determine $\|\mathcal{A}\|$.

For the exercises the following number of points can be obtained:
Exercise 1. 11 points Exercise 2. 6 points Exercise 3. 10 points
The grade is determined by adding 3 points to the total number of points obtained and dividing by 3 .

