Signals & Transforms — TEST 1 (part of AM module 4 — 201800138)

Date:

13-05-2019

Place:

Sports Center (SC1)

Time:

8:45–10:15 (till 10:45 for students with special rights)

Course coordinator:

Allowed aids during test: NONE

The solutions of the exercises should be clearly formulated. Moreover, in all cases you should motivate your answer! You are not allowed to use a calculator.

1. Let $\beta \in \mathbb{R}$, and consider the complex function f(t) with period T = 1 that equals

$$f(t) = e^{i2\pi\beta t}$$
 for $t \in [0, 1)$.

(a) Show that the complex Fourier coefficients f_k equal

$$f_k = e^{i\pi(\beta - k)} \operatorname{sinc}(\pi(\beta - k)).$$

- (b) For which β , $t \in \mathbb{R}$ does the Fourier series equal f(t).
- (c) Determine the generalized derivative of f(t) for all $t \in \mathbb{R}$.
- (d) Suppose β is not an integer. Use Parseval to compute $\sum_{k=-\infty}^{\infty} \frac{1}{(\beta-k)^2}$.
- 2. Determine the convolution of $f(t) = \mathbb{I}(t+1) + \delta(t+2)$ and $g(t) = e^{-t} \mathbb{I}(t-1)$.
- 3. What is the definition of a *Hilbert space*?
- 4. Let $\mathscr{C}([-2,2];\mathbb{R})$ denote the normed vector space of continuous functions f: $[-2,2] \to \mathbb{R}$ with norm $||f||_1 = \int_{-2}^2 |f(t)| dt$.
 - (a) Show that this is indeed a norm on $\mathscr{C}([-2,2];\mathbb{R})$.
 - (b) Let *A* be the linear mapping $A: \mathscr{C}([-2,2];\mathbb{R}) \to \mathbb{R}$ defined as

$$A(f) = \int_{-2}^{2} (t^2 - 1) f(t) dt.$$

On $\mathscr{C}([-2,2];\mathbb{R})$ we use as norm $||f||_1$, and on \mathbb{R} we use as norm the absolute value. Determine the operator norm ||A||.

problem:	1	2	3	4
points:	5+2+2+2	6	2	4+4

Property	·	Condition
Sifting	$\int_{-\infty}^{\infty} \delta(t-b) f(t) \mathrm{d}t = f(b)$	f(t) continuous at $t = b$
-	$f(t)\delta(t-b) = f(b)\delta(t-b)$	f(t) continuous at $t = b$
Convolution	$(f * \delta)(t) = f(t)$	
Scaling	$\delta(at - b) = \frac{1}{ a }\delta(t - \frac{b}{a})$	
_	$\int_{-\infty}^{t} \delta(\tau) \mathrm{d}\tau = \mathbb{1}(t)$	$t \neq 0$

Property	Time domain: $f(t)$	Frequency domain: f_k	
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha f_k + \beta g_k$	
Time-shift	$f(t- au), \ (au \in \mathbb{R})$	$\mathrm{e}^{-\mathrm{i}k\omega_0 au}f_k$	
Time-reversal	f(-t)	f_{-k}	
Conjugation	$f^*(t)$	f_{-k}^*	
Frequency-shift	$e^{in\omega_0 t} f(t), (n \in \mathbb{Z})$	f_{k-n}	

the design and the second seco