Signals & Transforms — TEST 2 (RESIT) (part of AM module 4 — 201800138)

Date:

21-06-2019

Place:

Therm

Time:

8:45–10:15 (till 10:45 for students with special rights)

Course coordinator:

G. Meinsma

Allowed aids during test: NONE

The solutions of the exercises should be clearly formulated. Moreover, in all cases you should motivate your answer! You are not allowed to use a calculator.

1. Let

$$f(t) = \frac{1}{t^2 + 4t + 8}$$

(a) Show that the Fourier transform of this f(t) is of the form

$$\hat{f}(\omega) = A e^{-B|w|} e^{iC\omega}$$

for certain positive real constants A, B, C. And determine these A, B, C.

- (b) Determine the energy of this f(t).
- (c) Let f(t) as defined above, and let

$$g(t) = \frac{1}{t^2 - 4t + 8}.$$

Determine the Fourier transform of (f * g)(t), and show that this Fourier transform is real for every $\omega \in \mathbb{R}$.

- 2. Determine the convolution of $f(t) = e^{-3t} \mathbb{I}(t-2)$ and $g(t) = e^{t} \mathbb{I}(t)$ via Fourier or Laplace transformation.
- 3. Give the definition of *abscissa of convergence* as used in Laplace transformation.
- 4. Given is the differential equation

$$y^{(2)}(t) + 3y^{(1)}(t) - 4y(t) = u^{(2)}(t) + 4u(t).$$
(1)

- (a) Determine the impulse response of (1).
- (b) Suppose that $u(t) = e^t \mathbb{I}(t)$. Determine the solution y(t) for t > 0 of (1) for the case that $y(0^-) = -1$ and $y^{(1)}(0^-) = 3$.

problem:	1	2	3	4	Test grade is $1 + 9p/p_{\text{max}}$
points:	(5+3+8	6	1	3+6	lest grade is $1 + 9p/p_{\text{max}}$

Property	Time domain	Freq. domain	Condition
Linearity	$a_1f_1(t) + a_2f_2(t)$	$a_1\hat{f}_1(\omega) + a_2\hat{f}_2(\omega)$	
Duality	$\hat{f}(t)$	$2\pi f(-\omega)$	
Conjugation	$f^*(t)$	$\hat{f}^*(-\omega)$	
Time-scaling	f(at)	$\frac{1}{ a }\hat{f}(\frac{\omega}{a})$	$a \in \mathbb{R}, a \neq 0$
Time-shift	f(t- au)	$\hat{f}(\omega)e^{-i\omega\tau}$	
Frequency-shift	$f(t)e^{\mathrm{i}\omega_0t}$	$\hat{f}(\omega - \omega_0)$	
Modulation Thm.	$f(t)\cos(\omega_0 t)$	$\frac{\hat{f}(\omega - \omega_0) + \hat{f}(\omega + \omega_0)}{2}$	
Differentiation (time)	$f^{(1)}(t)$	$\mathrm{i}\omega\hat{f}(\omega)$	$\lim_{t \to \pm \infty} f(t) = 0$
Integration (time)	$\int_{-\infty}^t f(\tau) \mathrm{d}\tau$	$\frac{\hat{f}(\omega)}{\mathrm{i}\omega}$	$\hat{f}(0) = 0$
Differentiation (freq.)	$-\mathrm{i} t f(t)$	$\hat{f}'(\omega)$	

f(t)	$\hat{f}(\omega)$	Condition
$rect_a(t)$	$a\operatorname{sinc}(a\omega/2)$	a > 0
$trian_a(t)$	$a \operatorname{sinc}^2(a\omega/2)$	$a \in \mathbb{R}, \ a > 0$
$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	$\operatorname{Re}(a) > 0$
$\frac{t^n}{n!} \mathrm{e}^{-at} \mathbb{I}(t)$	$\frac{1}{(a+\mathrm{i}\omega)^{n+1}}$	$\operatorname{Re}(a) > 0; \ n \in \mathbb{N}$
$-\frac{t^n}{n!}\mathrm{e}^{-at}\mathbb{1}(-t)$	$\frac{1}{(a+\mathrm{i}\omega)^{n+1}}$	$\operatorname{Re}(a) < 0; \ n \in \mathbb{N}$
e^{-at^2}	$\sqrt{\frac{\pi}{a}}e^{-\omega^2/(4a)}$	$a \in \mathbb{R}, \ a > 0$
$a\operatorname{sinc}(at/2)$	$2\pi \operatorname{rect}_a(\omega)$	$a \in \mathbb{R}, \ a > 0$

f(t)	$\hat{f}(\omega)$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
$\delta(t-b)$	$e^{-i\omega b}$
$e^{i\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
$\cos(\omega_0 t)$	$\pi(\delta(\omega-\omega_0)+\delta(\omega+\omega_0))$
sgn(t)	$\frac{2}{\mathrm{i}\omega}$
1(<i>t</i>)	$\frac{1}{\mathrm{i}\omega} + \pi\delta(\omega)$

Property	f(t)	F(s)
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(s) + a_2F_2(s)$
Time-scaling	f(at)	$\frac{1}{a}F(\frac{s}{a}) \qquad (\text{if } a > 0)$
Time-shift	$f(t-t_0)\mathbb{I}(t-t_0^-)$	$F(s)e^{-st_0} (\text{if } t_0 > 0)$
Shift in s-domain	$f(t)e^{s_0t}$	$F(s-s_0)$
Differentiation (t)	$f^{(1)}(t)$	$sF(s) - f(0^-)$
	$f^{(2)}(t)$	$s^2F(s) - sf(0^-) - f^{(1)}(0^-)$
Integration (t)	$\int_{0^-}^t f(\tau) \mathrm{d}\tau$	$\frac{F(s)}{s}$
Differentiation (s)	-tf(t)	F'(s)

$f(t), (t > 0^{-})$	F(s)
eat	1
$\frac{t^n}{n!} (n \in \mathbb{N})$	$\frac{s-a}{\frac{1}{s^{n+1}}}$
$\frac{t^n}{n!} e^{at} (n \in \mathbb{N})$	$\frac{1}{(s-a)^{n+1}}$
$\cos(bt)$	$\frac{s}{s^2 + b^2}$
$\sin(bt)$	$\frac{b}{s^2 + b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
$\delta(t)$	1