Signals & Transforms — TEST 1 (resit) (part of AM module 4)

Date:

06-06-2019

Place:

OH 215

Time:

8:45–10:15 (till 10:45 for students with special rights)

Course coordinator:

G. Meinsma

Allowed aids during test:

NONE

The solutions of the exercises should be clearly formulated. Moreover, in all cases you should motivate your answer! You are not allowed to use a calculator.

1. Consider the function f(t) with period T = 2 which equals

$$f(t) = |t|$$
 for $t \in [-1, 1)$.

(a) Sketch the function f(t) for $t \in [-3,3]$.

(b) Show that the real Fourier series of f(t) is

$$\frac{1}{2} + \sum_{m=0}^{\infty} \frac{-4}{(2m+1)^2 \pi^2} \cos((2m+1)\pi t).$$

- (c) Determine the complex Fourier coefficients f_k .
- (d) Use the above to compute $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$.
- 2. Determine the convolution of $f(t) = \text{rect}_{2\pi}(t) + \delta(t-1)$ and $g(t) = \sin(t) \mathbb{I}(t)$ without the use of Fourier or Laplace transformations.
- 3. Give the definition of *inner product* on a complex vector space.
- 4. Let T>0 and consider the linear mapping $A:\mathcal{L}^2([0,T];\mathbb{C})\to \ell^2(\mathbb{Z};\mathbb{C})$ with A(f)=g defined as

$$g(k) = \frac{1}{T} \int_0^T f(t) e^{-ik\frac{2\pi}{T}t} dt, \qquad k \in \mathbb{Z}.$$

On $\mathcal{L}^2([0,T];\mathbb{C})$ we take the standard norm

$$||f|| = \sqrt{\int_0^T |f(t)|^2 dt},$$

and on $\ell^2(\mathbb{Z};\mathbb{C})$ we take the standard norm

$$||g|| = \sqrt{\sum_{k=-\infty}^{\infty} |g(k)|^2}.$$

Determine the operator norm ||A||.

problem:	1	2	3	4
points:	1+6+342	7.	3	5

Property		Condition
Sifting	$\int_{-\infty}^{\infty} \delta(t-b) f(t) \mathrm{d}t = f(b)$	f(t) continuous at $t = b$
-	$f(t)\delta(t-b) = f(b)\delta(t-b)$	f(t) continuous at $t = b$
Convolution	$(f * \delta)(t) = f(t)$	
Scaling	$\delta(at - b) = \frac{1}{ a }\delta(t - \frac{b}{a})$	
- Arrivet -	$\int_{-\infty}^t \delta(\tau) \mathrm{d}\tau = \mathbb{1}(t)$	$t \neq 0$

Property	Time domain: $f(t)$	Frequency domain: f_k
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha f_k + \beta g_k$
Time-shift	$f(t-\tau), \ (\tau \in \mathbb{R})$	$e^{-ik\omega_0\tau}f_k$
Time-reversal	f(-t)	f_{-k}
Conjugation	$f^*(t)$	f_{-k}^*
Frequency-shift	$e^{in\omega_0 t} f(t), (n \in \mathbb{Z})$	f_{k-n}