Signals & Transforms (202001343) - TEST 1

Date:17-05-2021Place:NH 115Time:09:00-10:30 (till 10:55 for students with special rights)Course coordinator:G. MeinsmaAllowed aids during test:None

The solutions of the exercises should be clearly formulated. Moreover, in all cases you should motivate your answer! You are not allowed to use a calculator.

1. Consider the function f(t) of period T = 1 that for $t \in [0, 1]$ is defined as

 $f(t) = t - t^2 \quad \forall t \in [0, 1].$

- (a) Show that the Fourier coefficients equal $f_k = \frac{-1}{2k^2\pi^2}$ for all $k \neq 0$.
- (b) Determine its real Fourier series of f(t).
- (c) Use the above to determine $\sum_{k=1}^{\infty} \frac{1}{k^4}$.
- (d) For which $t \in \mathbb{R}$ is the Fourier series at t the same as f(t)?
- 2. Let h = f * g. Prove from the integral definition of convolution that the convolution of f(-t) and g(-t) equals h(-t).
- 3. Which of the following six functions are equal to $\delta(t-1)$:

(a) the derivative of $1(2t-2)$	(d) $2t^2\delta(2t-2)$
(b) the derivative of $t \mathbb{1}(2t-2)$	(e) $\frac{1}{2}t\delta(2t-2)$
(c) $t\delta(2t-2)$	(f) $t^2 \left(\delta(t-1) + \delta(t) \right)$

- 4. What is the definition of a Hilbert space?
- 5. Consider $\mathscr{C}([0,1];\mathbb{R})$ with norm $||f|| := \sqrt{\int_0^1 (t-t^2) f^2(t) dt}$.
 - (a) Formulate the corresponding inner product, and show that it is indeed an inner product on 𝔅([0, 1]; ℝ).
 - (b) Determine the best approximation of t^2 in the subspace $\mathscr{P}_1([0,1];\mathbb{R})$ of polynomials of degree 1 or less. Here we assume the above norm.
 - (c) The figure below shows shows graphs of t^2 and its best approximation in $\mathscr{P}_1([0,1];\mathbb{R})$, as well as its best approximation in $\mathscr{P}_1([0,1];\mathbb{R})$ but then with respect to the *standard* 2-norm $||f||_2 := \sqrt{\int_0^1 f^2(t) dt}$. Both best approximations are not very good near t = 0 and t = 1. Comparing the two norms, argue that p_* must correspond to the standard norm, and q_* to our funny norm $||f|| := \sqrt{\int_0^1 (t t^2) f^2(t) dt}$.

1	2	3	4	5
5+2+3+1	3	3	2	3+3+2
	1 5+2+3+1	1 2 5+2+3+1 3	1 2 3 5+2+3+1 3 3	1 2 3 4 5+2+3+1 3 3 2

lest grade is 1 + p/3

Property		Condition
Sifting	$\int_{-\infty}^{\infty} \delta(t-b) f(t) \mathrm{d}t = f(b)$	f(t) continuous at $t = b$
-	$f(t)\delta(t-b) = f(b)\delta(t-b)$	f(t) continuous at $t = b$
Convolution	$(f*\delta)(t)=f(t)$	
Scaling	$\delta(at-b) = \frac{1}{ a }\delta(t-\frac{b}{a})$	Section 19 Keeling
-	$\int_{-\infty}^t \delta(\tau) \mathrm{d}\tau = \mathbb{1}(t)$	$t \neq 0$

Property	Time domain: $f(t)$	Frequency domain: f_k
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha f_k + \beta g_k$
Time-shift	$f(t- au), \ (au \in \mathbb{R})$	$\mathrm{e}^{-\mathrm{i}k\omega_{0} au}f_{k}$
Time-reversal	f(-t)	f_{-k}
Conjugation	$f^*(t)$	f^*_{-k}
Frequency-shift	$e^{in\omega_0 t} f(t), (n \in \mathbb{Z})$	f_{k-n}

2