Signals & Transforms (202001343) — TEST 2

Date:

10-06-2022

Place:

TL 2275

Time:

08:45–10:15 (till 11:40 for students with special rights)

Course coordinator:

G. Meinsma

Allowed aids during test: None

The solutions of the exercises should be clearly formulated. Moreover, in all cases you should motivate your answer! You are not allowed to use a calculator.

1. The Hann window is defined as

$$f_{\text{hann}}(t) := (\frac{1}{2} + \frac{1}{2}\cos(\pi t))\operatorname{rect}_2(t).$$

- (a) Determine the Fourier transform of the Hann window.
- (b) Determine $\int_{-\infty}^{\infty} |\hat{f}_{hann}(\omega)|^2 d\omega$.
- 2. Determine the convolution of sinc(t+1) and sinc(2t).
- 3. Given is the differential equation

$$y^{(2)}(t) + 3y^{(1)}(t) + 2y(t) = u^{(2)}(t) - u^{(1)}(t).$$
(1)

- (a) Determine the frequency response of this differential equation.
- (b) Determine a solution y(t) for the case that $u(t) = e^{2t} \mathbb{I}(-t)$.
- (c) Suppose that $u(t) = \mathbb{I}(t)$. Use Laplace transformation to determine the solution y(t) for t > 0 of (1) for the case that $y(0^-) = 1$ and $y^{(1)}(0^-) = -2$.
- 4. Let $f:[0,\infty)\to\mathbb{R}$. What does it mean for this function to be *exponentially bounded*?
- 5. In the theory of Laplace there is a theorem about $\lim_{s\downarrow 0} sF(s)$, but this theorem does *not* apply to periodic functions. What can you say about $\lim_{s\downarrow 0} sF(s)$ for the case that f(t) is periodic? [Hint: recall the result from chapter 3 that periodic functions f(t) have a Fourier series $f(t) = \sum_{k=-\infty}^{\infty} f_k e^{ik\omega_0 t}$.]

problem:	1	2	3	4	5	
points:	4+4	4	1+4+4	2	4	1

Test grade is $1 + 9p/p_{\text{max}}$

Property	Time domain	Freq. domain	Condition
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1\hat{f}_1(\omega) + a_2\hat{f}_2(\omega)$	
Duality	$\hat{f}(t)$	$2\pi f(-\omega)$	
Conjugation	$f^*(t)$	$\hat{f}^*(-\omega)$	
Time-scaling	f(at)	$\frac{1}{ a }\hat{f}(\frac{\omega}{a})$	$a \in \mathbb{R}, a \neq 0$
Time-shift	f(t- au)	$\hat{f}(\omega)e^{-i\omega\tau}$	
Frequency-shift	$f(t)e^{\mathrm{i}\omega_0t}$	$\hat{f}(\omega - \omega_0)$	
Modulation Thm.	$f(t)\cos(\omega_0 t)$	$\frac{\hat{f}(\omega - \omega_0) + \hat{f}(\omega + \omega_0)}{2}$	
Differentiation (time)	$f^{(1)}(t)$	$(\mathrm{i}\omega)\hat{f}(\omega)$	$\lim_{t \to \pm \infty} f(t) = 0$
Integration (time)	$\int_{-\infty}^t f(\tau) \mathrm{d}\tau$	$\frac{\hat{f}(\omega)}{\mathrm{i}\omega}$	$\hat{f}(0) = 0$
Differentiation (freq.)	-itf(t)	$\hat{f}'(\omega)$	

f(t)	$\hat{f}(\omega)$	Condition
$rect_a(t)$	$a\operatorname{sinc}(a\omega/2)$	a > 0
$trian_a(t)$	$a \operatorname{sinc}^2(a\omega/2)$	$a \in \mathbb{R}, \ a > 0$
$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$	Re(a) > 0
$\frac{t^n}{n!} e^{-at} \mathbb{1}(t)$	$\frac{1}{(a+\mathrm{i}\omega)^{n+1}}$	$Re(a) > 0; \ n \in \mathbb{N}$
$-\frac{t^n}{n!}\mathrm{e}^{-at}\mathbb{I}(-t)$	$\frac{1}{(a+\mathrm{i}\omega)^{n+1}}$	$\operatorname{Re}(a) < 0; \ n \in \mathbb{N}$
$e^{-(at)^2}$	$\frac{\sqrt{\pi}}{ a } e^{-(\omega/(2a))^2}$	$a \in \mathbb{R}, \ a \neq 0$
$a\operatorname{sinc}(at/2)$	$2\pi \operatorname{rect}_a(\omega)$	$a \in \mathbb{R}, \ a > 0$

f(t)	$\hat{f}(\omega)$	
$\delta(t)$, 1	
1	$2\pi\delta(\omega)$	
$\delta(t-b)$	$e^{-i\omega b}$	
$\mathrm{e}^{\mathrm{i}\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	
$\cos(\omega_0 t)$	$\pi(\delta(\omega-\omega_0)+\delta(\omega+\omega_0))$	
sgn(t)	$\frac{2}{\mathrm{i}\omega}$	
1 (<i>t</i>)	$\frac{1}{\mathrm{i}\omega} + \pi\delta(\omega)$	

Property	f(t)	F(s)
Linearity	$a_1 f_1(t) + a_2 f_2(t)$	$a_1F_1(s) + a_2F_2(s)$
Time-scaling	f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right) \qquad \text{(if } a > 0\text{)}$
Time-shift	$f(t-t_0)\mathbb{I}(t-t_0^-)$	$F(s)e^{-st_0} (\text{if } t_0 > 0)$
Shift in s-domain	$f(t)e^{s_0t}$	$F(s-s_0)$
Differentiation (t)	$f^{(1)}(t)$	$sF(s) - f(0^-)$
	$f^{(2)}(t)$	$s^2F(s) - sf(0^-) - f^{(1)}(0^-)$
Integration (t)	$\int_{0^-}^t f(\tau) \mathrm{d} au$	$\frac{F(s)}{s}$
Differentiation (s)	-tf(t)	F'(s)

$f(t), (t > 0^-)$	F(s)
e ^{at}	_1_
$\frac{t^n}{n!} (n \in \mathbb{N})$	$\frac{s-a}{\frac{1}{s^{n+1}}}$
$\frac{t^n}{n!} e^{at} (n \in \mathbb{N})$	$\frac{1}{(s-a)^{n+1}}$
$\cos(bt)$	$\frac{s}{s^2 + b^2}$
$\sin(bt)$	$\frac{b}{s^2 + b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
$\delta(t)$	1