Signals & Transforms (202001343) — TEST 1 RESIT

Date:

13-06-2022

Place:

Therm 2

Time:

13:45–15:15 (till 15:40 for students with special rights)

Course coordinator:

G. Meinsma

Allowed aids during test: None

The solutions of the exercises should be clearly formulated. Moreover, in all cases

1. Consider the function f(t) of period $T = 2\pi$ which for $t \in [-\pi, \pi)$ is defined as

you should motivate your answer! You are not allowed to use a calculator.

$$f(t) = 2t\cos(t).$$

- (a) Determine the complex Fourier coefficients f_k .
- (b) Show that $Re(f_k) = 0$ for all k.
- (c) Determine the real Fourier series of f(t).
- 2. What is the Gibbs phenomenon? (A general idea suffices.)
- β 3. Which of the following functions equal $\delta(t-1)$:
 - (a) The derivative of $\mathbb{I}(2t-2)$
- (c) $t\delta(2t-2)$
- (b) The derivative of $t \mathbb{1}(2t-2)$
- (d) $2t^2\delta(2t-2)$

4. Let $u : \mathbb{R} \to \mathbb{R}$ be a piecewise smooth T-periodic function, and let y be a T-periodic solution of the differential equation

$$y^{(1)}(t) + y(t) = u(t).$$

- (a) Show that the power of this periodic function *y* does not exceed the power of *u* no matter which periodic *u* we take.
- (b) Determine all periodic functions u for which the power of the periodic solution y equals that of u.
- f 5. Use the integral defintion of convolution to determine the convolution of $f(t) = t \mathbb{1}(t-1)$ and $g(t) = t \mathbb{1}(t-1)$.
- 6. Consider $\mathscr{L}^2(\mathbb{R};\mathbb{C})$ with standard inner product $\langle g,h\rangle=\int_{-\infty}^\infty g(t)h^*(t)\,\mathrm{d}t$. In a later chapter (Chapter 4) it is shown that a certain mapping $\mathfrak{F}:\mathscr{L}^2(\mathbb{R};\mathbb{C})\to\mathscr{L}^2(\mathbb{R};\mathbb{C})$ has the property that $\langle g,h\rangle=\frac{1}{2\pi}\int_{-\infty}^\infty \hat{g}(\omega)\hat{h}^*(\omega)\,\mathrm{d}\omega$, where $\hat{g}=\mathfrak{F}(g),\hat{h}=\mathfrak{F}(h)$. Chapter 4 further claims that

$$\mathfrak{F}(a\operatorname{sinc}(a(t-t_0)/2)) = 2\pi\operatorname{rect}_a(\omega)e^{-i\omega t_0}.$$

(Here t_0 , $a \in \mathbb{R}$ and a > 0.) Is the sequence of functions $v_k(t) := \operatorname{sinc}(\pi(t - k))$ ($k \in \mathbb{Z}$) an *orthonormal set* on $\mathcal{L}^2(\mathbb{R};\mathbb{C})$ in the standard inner product?

1

problem:	1	2	3	4	5	6
points:	5+1+3	2	2	2+2	5	5

Test grade is 1 + p/3

Property		Condition
Sifting	$\int_{-\infty}^{\infty} \delta(t-b) f(t) \mathrm{d}t = f(b)$	f(t) continuous at $t = b$
-	$f(t)\delta(t-b) = f(b)\delta(t-b)$	f(t) continuous at $t = b$
Convolution	$(f * \delta)(t) = f(t)$	
Scaling	$\delta(at - b) = \frac{1}{ a }\delta(t - \frac{b}{a})$	
-	$\int_{-\infty}^t \delta(\tau) \mathrm{d}\tau = \mathbb{1}(t)$	$t \neq 0$

Property	Time domain: $f(t)$	Frequency domain: f_k		
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha f_k + \beta g_k$		
Time-shift	$f(t- au), \ (au \in \mathbb{R})$	$\mathrm{e}^{-\mathrm{i}k\omega_0 au}f_k$		
Time-reversal	f(-t)	f_{-k}		
Conjugation	$f^*(t)$	f_{-k}^*		
Frequency-shift	$e^{in\omega_0 t} f(t), (n \in \mathbb{Z})$	f_{k-n}		