Signals & Transforms (202001343) — TEST 1RE

Date:

12-06-2023

Place:

CR-2M

Time:

08:45–10:15 (till 10:40 for students with special rights)

Course coordinator:

G. Meinsma

Allowed aids during test: None

The solutions of the problems should be clearly formulated. Moreover, in all cases you should motivate your answer! You are not allowed to use a calculator.

1. Consider the periodic function f(t) of period 2 which for $t \in [2,4)$ equals

$$f(t) = t$$
.

- χ (a) Determine the generalized derivative of f(t) for all $t \in \mathbb{R}$.
- λ (b) Determine the complex Fourier coefficients f_k .
 - (c) Determine the real Fourier series of f(t).
- (d) Determine $\sum_{k=1}^{\infty} \frac{1}{k^2}$ using the Fourier coefficients.
- 2. Let $u : \mathbb{R} \to \mathbb{R}$ be a piecewise smooth T-periodic function, and let $y : \mathbb{R} \to \mathbb{R}$ be a T-periodic solution of the differential equation

$$y^{(2)}(t) + 2y^{(1)}(t) + y(t) = u^{(1)}(t) - \alpha u(t).$$

For which $\alpha \in \mathbb{R}$ is the average value of y(t) equal to zero (independent of the choice of periodic u).

- 3. Determine the convolution of $f(t) = \delta(2t) + e^{2t} \mathbb{I}(-t)$ and $g(t) = e^{-t} \mathbb{I}(t-1)$. You must use the integral definition of convolution, not Fourier or Laplace.
- 4. Let T > 0, and suppose that f(t) is a continuous function. Is it true that f(t) has period T if-and-only-if $\int_a^{a+T} f(\tau) d\tau$ is the same for every $a \in \mathbb{R}$?
- 5. What is the definition of a 1-norm on the space of continuous functions $f:[0,2]\to\mathbb{C}$?
- 6. Let \mathbb{X} be a real vector space with inner product, and let \mathbb{V} a subspace of \mathbb{X} , and that $v_* \in \mathbb{V}$ is a best approximation in \mathbb{V} of $x \in \mathbb{X}$. Prove that $x v_* \perp \mathbb{V}$. (You may only use elementary properties of inner products, and not the theorems in Chapter 1 that already claim that $x v_* \perp \mathbb{V}$.)

problem:	1	2	3	4	5	6
points:	2+4+2+3	1	6	3	1	5

Test grade is 1 + p/3

Property		Condition
Sifting	$\int_{-\infty}^{\infty} \delta(t-b) f(t) \mathrm{d}t = f(b)$	f(t) continuous at $t = b$
-	$f(t)\delta(t-b) = f(b)\delta(t-b)$	f(t) continuous at $t = b$
Convolution	$(f * \delta)(t) = f(t)$	
Scaling	$\delta(at - b) = \frac{1}{ a }\delta(t - \frac{b}{a})$	
-	$\int_{-\infty}^t \delta(\tau) \mathrm{d}\tau = \mathbb{1}(t)$	$t \neq 0$

Property	Time domain: $f(t)$	Frequency domain: f_k	
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha f_k + \beta g_k$	
Time-shift	$f(t-\tau), \ (\tau \in \mathbb{R})$	$e^{-ik\omega_0\tau}f_k$	
Time-reversal	f(-t)	f_{-k}	
Conjugation	$f^*(t)$	f_{-k}^*	
Frequency-shift	$e^{in\omega_0 t} f(t), (n \in \mathbb{Z})$	f_{k-n}	