Signals & Transforms (202001343) — TEST 1

Date:

13-03-2023

Place:

HT-1100

Time:

08:45–10:15 (till 10:40 for students with special rights)

Course coordinator:

G. Meinsma

Allowed aids during test: None

The solutions of the exercises should be clearly formulated. Moreover, in all cases you should motivate your answer! You are not allowed to use a calculator.

1. Let $\alpha \in \mathbb{R}$ and consider the complex function f(t) of period 2π which for $t \in \mathbb{R}$ $[0,2\pi)$ equals

$$f(t) = \begin{cases} e^{i\alpha t} & \text{if } t \in [0, \pi), \\ 0 & \text{if } t \in [\pi, 2\pi). \end{cases}$$

- (a) Determine the generalized derivative of f(t) for all $t \in \mathbb{R}$.
- (b) Determine the complex Fourier coefficients f_k .
- (c) Determine all $\alpha \in \mathbb{R}$ for which infinitely many Fourier coefficients are equal to zero.
- (d) Determine all $t \in \mathbb{R}$ for which the Fourier series at t equals f(t).
- 2. Let $u: \mathbb{R} \to \mathbb{R}$ be a piecewise smooth T-periodic function, and let $y: \mathbb{R} \to \mathbb{R}$ be a T-periodic solution of the differential equation

$$y^{(1)}(t) + 3y(t) = u^{(1)}(t) + 2u(t).$$

- (a) Express the Fourier coefficients y_k of y in terms of the Fourier coefficients u_k of u.
- (b) Show that the power of y is less than or equal to the power of u.
- 3. Determine the convolution of $f(t) = \text{rect}_2(t-1)$ and $g(t) = e^t \mathbb{I}(-t)$.
- 4. let A > 0, B > 0, $\phi_1, \phi_2 \in \mathbb{R}$. Show using Euler's formula that

$$A\cos(t+\phi_1)+B\cos(t+\phi_2)=C\cos(t+\phi_3)$$

for some $C \ge 0, \phi_3 \in \mathbb{R}$.

- 5. What is the definition of a *Banach space*.
- 6. Let \mathbb{X} be a complex Hilbert space, and suppose e_1, e_2, \ldots is an infinite orthonormal sequence in \mathbb{X} . Let $a_k \in \mathbb{C}$ for $k \in \mathbb{N}$. Prove that $\sum_{k=1}^{\infty} a_k e_k$ converges in \mathbb{X} if-and-only-if $\sum_{k=1}^{\infty} |a_k|^2 < \infty$.

problem:	1	2	3	4	5	6
points:	2+4+2+1	1+2	4	4	2	4

Test grade is 1 + p/3

Property		Condition
Sifting	$\int_{-\infty}^{\infty} \delta(t-b) f(t) \mathrm{d}t = f(b)$	f(t) continuous at $t = b$
-	$f(t)\delta(t-b) = f(b)\delta(t-b)$	f(t) continuous at $t = b$
Convolution	$(f * \delta)(t) = f(t)$	
Scaling	$\delta(at - b) = \frac{1}{ a }\delta(t - \frac{b}{a})$	
	$\int_{-\infty}^t \delta(\tau) \mathrm{d}\tau = \mathbb{1}(t)$	$t \neq 0$

Property	Time domain: $f(t)$	Frequency domain: f_k		
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha f_k + \beta g_k$		
Time-shift	$f(t-\tau), \ (\tau \in \mathbb{R})$	$\mathrm{e}^{-\mathrm{i}k\omega_0 au}f_k$		
Time-reversal	f(-t)	f_{-k}		
Conjugation	$f^*(t)$	f_{-k}^*		
Frequency-shift	$e^{in\omega_0 t} f(t), (n \in \mathbb{Z})$	f_{k-n}		