Signals & Transforms (202001343) — TEST 1

Date: 10-03-2024

Place: SP 1

Time: 08:45–10:15 (till 10:40 for students with special facilities)

Course coordinator: G. Meinsma

Allowed aids during test: None

The solutions of the exercises should be clearly formulated. You are not allowed to use a calculator.

1. Consider the periodic function f(t) with period T = 4 which for $t \in [-1,3)$ equals

$$f(t) = \begin{cases} 2 & t \in [-1,1) \\ -1 & t \in [1,3) \end{cases}.$$

- (a) Determine the Fourier coefficients f_k of f(t) and show that they are real numbers.
- (b) For which $t \in \mathbb{R}$ is the Fourier series of f(t) equal to f(t)?
- (c) Determine the real Fourier series of f(t).
- 2. Let f(t) be a T-periodic function, and let g(t) = f(3t). Express the Fourier coefficients g_k of g(t) in terms of the Fourier coefficients f_k of f(t).
- 3. Determine the generalized derivative of $e^{2t} \mathbb{I}(-t) + \mathbb{I}(t^2 9)$ and make your final answer as simple as possible.
- 4. Determine the convolution of $f(t) = \text{rect}_2(t-1)$ and $g(t) = e^t \mathbb{I}(-t)$.
- 5. Determine $A \ge 0$ and a $\phi \in \mathbb{R}$ such that $\cos(t) \sin(t) = A\cos(t + \phi)$.
- 6. Let X be an inner product space and suppose $(e_k)_{k \in \mathbb{N}}$ an orthonormal sequence in X. Let $\alpha_k \in \mathbb{R}$.
 - (a) If \mathbb{X} is complete (i.e. a Hilbert space), show that $\sum_{k \in \mathbb{N}} \alpha_k e_k$ is in \mathbb{X} if-and-only-if $\sum_{k \in \mathbb{N}} |\alpha_k|^2 < \infty$.
 - (b) Give an example of an inner product space \mathbb{X} for which $\sum_{k \in \mathbb{N}} |\alpha_k|^2 < \infty$ yet $\sum_{k \in \mathbb{N}} \alpha_k e_k$ is not in \mathbb{X} .

problem:	1	2	3	4	5	6
points:	6+1+2	2	2	5	2	5+2

Test grade is 1 + p/3

Property	-	Condition
Sifting	$\int_{-\infty}^{\infty} \delta(t-b) f(t) dt = f(b)$	f(t) continuous at $t = b$
-	$f(t)\delta(t-b) = f(b)\delta(t-b)$	f(t) continuous at $t = b$
Convolution	$(f * \delta)(t) = f(t)$	
Scaling	$\delta(at - b) = \frac{1}{ a }\delta(t - \frac{b}{a})$	# 15 ₄ :
-	$\int_{-\infty}^t \delta(\tau) \mathrm{d}\tau = \mathbb{I}(t)$	$t \neq 0$

Property	Time domain: $f(t)$	Frequency domain: f_k		
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha f_k + \beta g_k$		
Time-shift	$f(t-\tau), \ (\tau \in \mathbb{R})$	$e^{-ik\omega_0\tau}f_k$		
Time-reversal	f(-t)	f_{-k}		
Conjugation	$f^*(t)$	f_{-k}^*		
Frequency-shift	$e^{in\omega_0 t} f(t), (n \in \mathbb{Z})$	f_{k-n}		