Signals & Transforms (202001343) — TEST 1 RE

Date:

09-04-2025

Place:

TL-3130

Time:

13:45–15:15 (till 15:40 for students with special facilities)

Course coordinator:

G. Meinsma

Allowed aids during test: None

The solutions of the exercises should be clearly formulated. You are not allowed to use a calculator.

1. Consider the periodic function $f: \mathbb{R} \to \mathbb{C}$ with period π which for $t \in [0,\pi)$ equals

$$f(t) = e^{it}$$
.

- (a) Determine the complexe Fourier coefficients f_k of f(t).
- (b) Determine the value of the Fourier series at t = 0.
- (c) Determine the real Fourier series of Re(f(t)).
- 2. Determine the generalized derivative of $\mathbb{I}(-t+2)\cos(t-\mathbb{I}(t))$ and make your final answer as simple as possible.
- 3. Determine the convolution of $f(t) = e^t \mathbb{I}(-t)$ and $g(t) = e^{2t} \mathbb{I}(-t+1)$. You must use the integral definition of convolution, not Fourier or Laplace.
- 4. Formulate the reverse triangle inequality for norms.
- 5. The lecture notes argue that the sequence $(\frac{1}{\sqrt{2}}e^{ik\pi t})_{k\in\mathbb{Z}}$ is a complete orthonormal sequence for $\mathcal{L}^2([-1,1];\mathbb{C})$.
 - (a) Show that every $f \in \mathcal{L}^2([0,1];\mathbb{R})$ can be written as

$$f(t) = c_0 + \sum_{k=1}^{\infty} c_k \cos(k\pi t), \qquad c_k \in \mathbb{R}.$$

[Hint: given $f \in \mathcal{L}^2([0,1];\mathbb{R})$ define $g: (-1,1) \to \mathbb{R}$ as g(t) = f(|t|).]

(b) For each $k \in \mathbb{N} = \{1, 2, ...\}$ determine $\|\cos(k\pi t)\|$ where $\|\cdot\|$ is the norm on $\mathcal{L}^2([0, 1]; \mathbb{R})$.

problem:	1	2	3	4	5
points:	4+2+4	3	5	2	4+3

Test grade is 1 + p/3

Property		Condition
Sifting	$\int_{-\infty}^{\infty} \delta(t-b) f(t) \mathrm{d}t = f(b)$	f(t) continuous at $t = b$
-	$f(t)\delta(t-b) = f(b)\delta(t-b)$	f(t) continuous at $t = b$
Convolution	$(f * \delta)(t) = f(t)$	
Scaling	$\delta(at-b) = \frac{1}{ a }\delta(t-\frac{b}{a})$	
-	$\int_{-\infty}^{t} \delta(\tau) \mathrm{d}\tau = \mathbb{1}(t)$	$t \neq 0$

Property	Time domain: $f(t)$	Frequency domain: f_k
Linearity	$\alpha f(t) + \beta g(t)$	$\alpha f_k + \beta g_k$
Time-shift	$f(t- au), \ (au \in \mathbb{R})$	$\mathrm{e}^{-\mathrm{i}k\omega_0 au}f_k$
Time-reversal	f(-t)	f_{-k}
Conjugation	$f^*(t)$	f_{-k}^*
Frequency-shift	$e^{in\omega_0 t} f(t), (n \in \mathbb{Z})$	f_{k-n}