Test Mathematical Statistics (Module 5), October 28, 2022, 8.45-11.45 h.

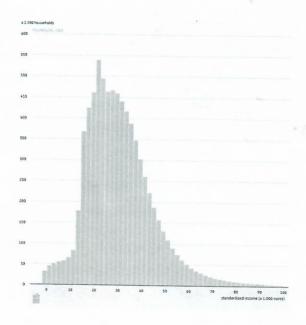
A formula sheet is added. A regular scientific calculator is allowed, a programmable calculator with graphical interface is not.

Part A: Basic concepts

- (a) [1 point] What is an estimator?
- (b) [2 points] The c.d.f. of a random variable X is $x \mapsto F(x) = P(X \le x)$. In the lecture we discussed a strategy to construct estimators by replacing probabilities by relative frequencies. Using this principle, propose an estimator for the c.d.f. given i.i.d. data X_1, \ldots, X_n .
- (c) [1 point] During the lecture, we worked with two estimators for the variance of i.i.d. observations. One estimator has a normalization factor 1/n and the other has a normalization factor 1/(n-1). Provide a statistical reason why both estimators are of interest.
- (d) [1 point] What is a dummy variable? Provide an example.
- (e) [3 points] For a random variable X with mean μ and variance σ^2 , the skewness is defined by $E(X \mu)^3/\sigma^3$. What does the skewness measure? Compute the skewness for the Bernoulli distribution with success probability p. For which value(s) of p do we have positive/negative/vanishing skewness?
- (f) [2 points] What defines a nonparametric test? What are the hypotheses in the Shapiro-Wilks test?

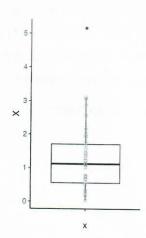
Part B: Visual interpretation of data

1. [1 point] A histogram of the Dutch income distribution is displayed below. How could the data be transformed such that the distribution resembles more a normal distribution?



Source:CBS

2. [2 points] Below a boxplot is displayed with data points plotted on top (every little circle is one data point). Make a drawing for the c.d.f. of this dataset that is as accurate as possible.



Part C: Theory

3. (a) [1 point] Show that for any $\theta > 0$

$$f_{\theta}(x) = \begin{cases} \theta x^{\theta - 1}, & 0 < x \le 1, \\ 0, & \text{otherwise} \end{cases}$$

is a p.d.f.

- (b) [2 point] Determine the c.d.f. and the quantile function for the distribution with p.d.f. f_{θ} and find closed-form expressions for the first quartile and the median of this distribution.
- (c) [3 point] Denote by P_{θ} the distribution with p.d.f. f_{θ} . Suppose that we observe an i.i.d. sample $X_1, \ldots, X_n \sim P_{\theta}$ and the parameter space is $\Theta = (0, \infty)$. Show that

$$\widehat{\theta} = -\frac{n}{\sum_{i=1}^{n} \log(X_i)}$$

is the maximum likelihood estimator. (To get full points you also have to show that the estimator indeed maximizes the likelihood)

- (d) [3 points] Show that $1/\widehat{\theta}$ is an unbiased estimator for $1/\theta$. Hint: You may use the fact that $\lim_{x\downarrow 0} x^{\alpha} \log(x) = 0$ for all $\alpha > 0$.
- (e) [3 points] Based on the first moment, compute the moment estimator for θ .
- (f) [1 point] To compare the moment estimator with the MLE for estimation of θ , we would like to compute the mean-squared error (MSE) for both of them. However, this seems very hard and might even be analytically intractable. What else can we do to determine which estimator is better?
- (g) [2 points] Show that the statistic $T(X_1, \ldots, X_n) = \sum_{i=1}^n \log(X_i)$ is sufficient.
- (h) [3 points] Show that the α -level uniformly most powerful test for $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ with $0 < \theta_0 < \theta_1$ is of the form $\sum_{i=1}^n \log(X_i) > c_\alpha$ for a suitable constant c_α .
- 4. [2 points] Consider the multiple linear regression model in matrix -vector notation $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ and assume that $X^{\top}X$ is invertible and let $\widehat{\boldsymbol{\beta}} = (X^{\top}X)^{-1}X^{\top}\mathbf{Y}$. Show that

$$\|Y - X\beta\|_{2}^{2} = \|Y - X\widehat{\beta}\|_{2}^{2} + \|X(\widehat{\beta} - \beta)\|_{2}^{2}$$

where $\|\cdot\|_2^2$ denotes the squared Euclidean norm. Deduce from this relation that $\widehat{\beta}$ is the least squares estimator.

- 5. [3 points] Suppose we include the same explanatory variable two times in our multiple regression model. Working in the matrix-vector notation $\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ for multiple regression, show that the matrix $X^{\top}X$ is not invertible which means we cannot work with the usual definition of the least squares estimator $\hat{\boldsymbol{\beta}} = (X^{\top}X)^{-1}X^{\top}Y$.
- 6. Someone from the sales department approaches you for statistical consultation. To collect automatically tolls from cars passing a tunnel, they want to buy a system that automatically detects and reads the license plates of cars. Before they start negotiating the prices, they want to perform a quality test with all the available systems. For a given system, denote by p the (unknown) probability that it misreads a license plate. Moreover, it is assumed that for different cars, the chance to misread the license plate is independent of each other.
 - (a) [1 point] Show that for a given system and n measurements, we can rewrite this as statistical model, where we are given n i.i.d. observations from the Bernoulli distribution with parameter p.
 - (b) [4 points] Work in the same setup as in Part (a) and let $\alpha \leq 1/2$. Assuming that n is very large, find a value $T_{\alpha,n}$ such that if $p \leq 0.01$, we have

 $P(\text{number of misread license plates} > T_{\alpha,n}) \leq \alpha + \text{a small remainder term.}$

Hint: In principle, $T_{\alpha,n} = \infty$ is a solution. Since this is statistically useless, it does not count. One should try to find the smallest possible $T_{\alpha,n}$ satisfying the inequality above.

(c) [1 point] The quality test for the license plate detection systems is to remove all systems for which we have $(1 - \alpha)$ -confidence that p > 0.01. Formulate a procedure based on Part (b) to remove all such systems.

Formula Sheet Mathematical Statistics

Probability Theory

$$E(X+Y) = E(X) + E(Y) \qquad E(X-Y) = E(X) - E(Y) \qquad E(aX+b) = aE(X) + b$$

$$var(X) = E(X^2) - (EX)^2 \qquad var(aX+b) = a^2var(X)$$
If X and Y are independent:
$$var(X+Y) = var(X) + var(Y), \quad var(X-Y) = var(X) + var(Y)$$

$$var(T) = E(var(T|V)) + var(E(T|V))$$

Distribution	Probability/Density function	Range	E(X)	var(X)
Binomial (n, p)	$\binom{n}{x} p^x (1-p)^{n-x}$	0, 1, 2,, n	пр	np(1-p)
Poisson (μ)	$e^{-\mu}\mu^x/x!$	0, 1, 2,	μ	μ
Uniform on (a, b)	1/(b-a)	a < x < b	(a + b)/2	$(b-a)^2/12$
Exponential (λ)	$\lambda \exp(-\lambda x)$	$x \ge 0$	1/λ	$1/\lambda^2$
Gamma (α, β)	$x^{\alpha-1}\exp\left(-\frac{x}{\beta}\right)/(\Gamma(\alpha)\beta^{\alpha})$	<i>x</i> > 0	$\alpha \times \beta$	$\alpha \times \beta^2$
Chi-square (χ_f^2)	is the Gamma distribution with $\alpha = f/2$ and $\beta = 2$			

Testing procedure in 8 steps

- 1. Give a probability model of the observed values (the statistical assumptions).
- 2. State the null hypothesis and the alternative hypothesis, using parameters in the model.
- 3. Give the proper test statistic.
- **4.** State the distribution of the test statistic if H_0 is true.
- 5. Compute (give) the observed value of the test statistic.
- 6. State the test and a. Determine the rejection region or b. Compute the p-value.
- 7. State your statistical conclusion: reject or fail to reject H_0 at the given significance level.
- **8.** Draw the conclusion in words.

Bounds for Confidence Intervals:

$$\begin{array}{l} * \;\; \hat{p} \pm c \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \\ * \;\; \overline{X} \pm c \frac{S}{\sqrt{n}} \quad \text{and} \quad \left(\frac{(n-1)S^2}{c_2}, \frac{(n-1)S^2}{c_1}\right) \\ * \;\; \overline{X} - \overline{Y} \pm c \sqrt{S^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}, \text{with } S^2 = \frac{n_1 - 1}{n_1 + n_2 - 2} S_X^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} S_Y^2 \quad \text{or: } \overline{X} - \overline{Y} \pm c \sqrt{\frac{S_X^2}{n_1} + \frac{S_Y^2}{n_2}} \\ * \;\; \hat{p}_1 - \hat{p}_2 \pm c \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}} \\ * \;\; (\text{regression}) \;\; \hat{\beta}_i \pm c \times se(\hat{\beta}_i) \quad \text{and} \quad \hat{\beta}_0 + \hat{\beta}_1 x_0 \pm c S \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}}, \text{ with } \; \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x} \;, \\ S_{XY} = \sum_i (x_i - \overline{x})(y_i - \overline{y}) \;, \;\; \hat{\beta}_1 = \frac{S_{XY}}{S_{XX}} \;, \;\; se(\hat{\beta}_1) = \frac{S}{\sqrt{S_{XX}}} \;\; \text{and} \quad S^2 = \frac{1}{n - k - 1} \sum_{i=1}^n \left(Y_i - \hat{Y}_i\right)^2 \;. \end{array}$$

Prediction intervals:
$$\overline{X} \pm c \sqrt{S^2 \left(1 + \frac{1}{n}\right)}$$

(regression)
$$\hat{\beta}_0 + \hat{\beta}_1 x_0 \pm cS \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$

Test statistics

* X (number of successes for a binomial situation)

*
$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$
 and S^2
* $T = \frac{(\overline{X} - \overline{Y}) - \Delta_0}{\sqrt{S^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$, with $S^2 = \frac{n_1 - 1}{n_1 + n_2 - 2} S_X^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} S_Y^2$ or: $Z = \frac{(\overline{X} - \overline{Y}) - \Delta_0}{\sqrt{S_X^2 + \frac{S_Y^2}{n_2}}}$

$$* F = \frac{S_X^2}{S_V^2}$$

*
$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
, with $\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$

* (regression)
$$T = \hat{\beta}_i / se(\hat{\beta}_i)$$
 and $F = \frac{SS_{Regr}/k}{SS_{Error}/(n-k-1)}$

Adjusted coefficient of determination:
$$R_{adj}^2 = 1 - \frac{n-1}{n-k-1} \times \frac{SS_{Error}}{SS_{Total}}$$

Analysis of categorical variables

* 1 row and
$$k$$
 columns: $\chi^2 = \sum_{i=1}^k \frac{(N_i - E_0 N_i)^2}{E_0 N_i}$ $(df = k - 1)$

*
$$r \times c$$
-cross table: $\chi^2 = \sum_{j=1}^{i=1} \sum_{i=1}^r \frac{\left(N_{ij} - \widehat{E}_0 N_{ij}\right)^2}{\widehat{E}_0 N_{ij}}$, with $\widehat{E}_0 N_{ij} = \frac{\text{row total} \times \text{column total}}{n}$ and $df = (r-1)(c-1)$.

Non-parametric tests

* Sign test:
$$X \sim B\left(n, \frac{1}{2}\right)$$
 under H_0

* Wilcoxon's Rank sum test:
$$W = \sum_{i=1}^{n_1} R(X_i)$$
, under H_0 with: $E(W) = \frac{1}{2} n_1 (N+1)$ and $var(W) = \frac{1}{12} n_1 n_2 (N+1)$

Test on the normal distribution

* Shapiro – Wilk's test statistic:
$$W = \frac{\left(\sum_{i=1}^{n} a_i X_{(i)}\right)^2}{\sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2}$$