(Class) Test-2: Analysis II Statistics and Analysis (201800139)

23-October-2018, 08:45 - 10:15

Total Points: 22

[2]

All answers must be motivated.

Approach to a solution is equally (if not more) important.

Use of an electronic calculator or a book is not allowed.

Good Luck!

- 1. (a.) Give the definitions of a metric space and a convergent sequence in it. [3]
 - (b.) Consider a convergent sequence x_n in a metric space X. Suppose $E \subset X$ is a closed set. Show that if $x_n \in E$ for all $n \in \mathbb{N}$, then the limit is also in E.
 - (c.) Consider the open and closed balls (with radius r > 0) around a in a metric space (X, ρ) :

$$B_r(a) = \{x \in X : \rho(x, a) < r\}$$
 and $C_r(a) = \{x \in X : \rho(x, a) \le r\}.$

Show that the closure, $\overline{B_r(a)}$, of the open ball need not coincide with the corresponding closed ball $C_r(a)$.

- 2. (a.) Let X and Y be two metric spaces and $f: X \to Y$ be a continuous function. Suppose $E \subset X$ is a connected set. Show that the forward image f(E) is connected in Y. [3] [You may use relationships regarding inverse images without proof.]
 - (b.) Show that the inverse image of a connected set need not be connected. [1]
- 3. (a.) Give the definition of differentiability of a function $f: \mathbb{R}^n \to \mathbb{R}^m$, at a point $\mathbf{a} \in \mathbb{R}^n$. [1]
 - (b.) Prove the *chain rule* for functions of more than one variables: [4] Suppose $g: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at \mathbf{a} and $f: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $g(\mathbf{a})$. Then $f \circ g$ is differentiable at \mathbf{a} and

$$D(f \circ g)(\mathbf{a}) = Df(g(\mathbf{a})) Dg(\mathbf{a}).$$

- 4. (a.) State the implicit function theorem.
 - (b.) Consider the following relations:

$$u^{2} + x v + y = 0$$

$$y u + v^{3} + x^{2} = 0.$$

Do these relationships allow us to consider x and y to be (proper) functions of u and v defined on a (non-empty) neighbourhood of the point $(u_0, v_0) = (0, -1)$? [3]

Grade: $\frac{\text{score on test}}{22} \times 9 + 1$ (rounded off to two decimal places)