(Class) Test-1: Analysis II Statistics and Analysis (201800139)

24-september-2019, 08:45 - 10:15

Total Points: 21

All answers must be motivated. Approach to a solution is equally important as the final answer. Use of an electronic calculator or a book is not allowed. Good Luck!

- 1. (a.) Give the definition of absolute convergence of a series of real numbers, using ϵ - δ -N [2]
 - (b.) Determine the convergence/divergence of the following series. In case a series converges, determine whether it also converges absolutely. [2+2]

(i.)
$$\sum_{k=1}^{\infty} \left(1 - \frac{1}{k}\right)^k$$
 (ii.)
$$\sum_{k=1}^{\infty} \left(\frac{3k - \cos(k)}{2k + \sqrt{k}}\right)^k$$

Suppose $a_n \geq 0$, $b_n > 0$, $\forall n \in \mathbb{N}$. [3]

If
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$$
 and $\sum_{k=1}^{\infty} b_k$ diverges, then $\sum_{k=1}^{\infty} a_k$ diverges as well.

- 2. Consider the series of real valued functions given by: $\sum_{k=1}^{\infty} a_k \frac{1}{k^x}, \text{ where } a_k \in \mathbb{R}, \ \forall k \in \mathbb{N}.$ Suppose the series converges at $x = x_0$.
 - (a.) Show that the series converges absolutely on $(x_0 + 1, \infty)$. [3] Hint: First argue, and then use, that the sequence $\frac{|a_k|}{k^{x_0}}$ is bounded.
 - (b.) Show that the series converges uniformly on $[x_0 + r, \infty)$, for any r > 1.
- 3. (a.) Find the radius of convergence and the convergence interval of the power series: [3] $\sum_{k=2}^{\infty} k(k-1) \, x^k.$
 - (b.) Determine a simpler (more compact) form/expression for the power series in 3(a.) on its interval of convergence. [3]

Grade:
$$\frac{\text{score on test}}{21} \times 9 + 1$$
 (rounded off to two decimal places)