(Class) Test-1: Analysis II Statistics and Analysis (201800139)

22-september-2020, 10:00 - 11:30

Total Points: 20

All answers must be motivated. Approach to a solution is equally important as the final answer. Use of an electronic calculator or a book is not allowed. Good Luck!

- 1. (a) Give the definition of conditional convergence of a series of real numbers. [2]
 - (b) Determine the convergence/divergence of the following series. In case a series converges, determine whether it also converges absolutely. [2+2]

(i.)
$$\sum_{k=1}^{\infty} (-1)^k \frac{k^2 + \pi}{k^3 + \sin(k)}$$
 (ii.) $\sum_{k=1}^{\infty} \left(\frac{k - \cos(k^2)}{3k + \log(k+1)} \right)^k$

- (c) Prove the following special "Limit Comparison Test": [3] Suppose $a_n \geq 0, \forall n \in \mathbb{N}$ and $b_n \neq 0, \forall n \in \mathbb{N}$. If $\lim_{n \to \infty} \frac{a_n}{b_n} = -1$ and $\sum_{k=1}^{\infty} a_k$ converges, then $\sum_{k=1}^{\infty} b_k$ converges as well.
- 2. Consider the series of real valued functions given by:

$$\sum_{k=1}^{\infty} \frac{x}{k} \sin\left(\frac{x}{k}\right).$$

- (a) Show that the series converges uniformly on every bounded interval of \mathbb{R}
- (b) Show that the series converges to a twice continuously differentiable function. [3]
- 3. (a) Find the radius of convergence and the convergence interval of the power series: [3]

$$\sum_{k=0}^{\infty} \left(\frac{1}{(-1)^k - 5} \right)^k x^k.$$

- (b) Does the power series in 3.(a) converges absolutely at x = -4.5? [1]
- (c) What is the radius of convergence of the power series: [1]

$$\sum_{k=1}^{\infty} k \left(\frac{1}{(-1)^k - 5}\right)^k x^{k-1}.$$

Grade: $\frac{\text{score on test}}{20} \times 9 + 1$ (rounded off to one decimal place)