(Class) Test-1: Analysis II Statistics and Analysis (202001350)

28 September 2021, 08:45—10:15, NH-205

Total Points: 20

[3]

All answers must be motivated. Approach to a solution is equally important as the final answer.

Use of an electronic calculator or a book is not allowed.

Good Luck!

- 1. (a) Give the definition of convergence of a series of real numbers. [2]
 - (b) Determine the convergence/divergence of the following series. In case a series converges, determine whether it also converges absolutely. [2+2]

(i.)
$$\sum_{k=1}^{\infty} (-1)^k \frac{2k - \log(k)}{k^2 + \log(k)}$$
 (ii.) $\sum_{k=1}^{\infty} \sin(\frac{1}{k^2}) \cos(\frac{1}{k})$

(c) Prove the following assertion: Suppose there exists an $r \in (0,1)$ such that for all $k \in \mathbb{N}$ there holds:

$$|a_{k+2}| \le r|a_k|.$$

Then the series $\sum_{k=1}^{\infty} a_k$ is absolutely convergent.

2. Consider the series of real valued functions given by:

$$\sum_{k=1}^{\infty} e^{-k^2 x}.\tag{1}$$

- (a) Show that for every $x_0 > 0$ the series in (1) converges uniformly on $[x_0, \infty)$. [3]
- (b) Show that the series in (1) converges pointwise on $(0, \infty)$, but not uniformly on that interval.
- 3. (a) Find the radius of convergence and the convergence interval I of the power series: [3]

$$f(x) = \sum_{k=0}^{\infty} \frac{k!}{(2k)!} x^k.$$

- (b) Show that f(x) is analytic in I.
- (c) Is there a (non-empty) interval $(-a, a) \subseteq I$ such that f(x) = 0 for all $x \in (-a, a)$? [1]

Grade:
$$\frac{\text{score on test}}{20} \times 9 + 1$$
 (rounded off to one decimal place)