Make-up Exam: Analysis II
 Statistics and Analysis (202001350)

November, 11, 2021, 08:45-11:45
Total Points : 35

All answers must be motivated.
Approach to a solution is equally important as the final answer.
The exam is closed-book and also, use of an electronic calculator is not allowed
Good Luck!

1. Let the sequence $\left\{a_{k}, k \in \mathbb{N}\right\}$ be such that:

$$
\begin{equation*}
\text { The infinite series } \sum_{k=1}^{\infty} a_{k} \text { converges. } \tag{1}
\end{equation*}
$$

Indicate which of the following statements are true and which are false. If the statement holds, then provide a proof, when false provide a counter example.
(a) For all sequences $\left\{a_{k}, k \in \mathbb{N}\right\}$ satisfying (1) we have;

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|<\infty
$$

(b) For all sequences $\left\{a_{k}, k \in \mathbb{N}\right\}$ satisfying (1) we have;

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k}^{2}<\infty \tag{2}
\end{equation*}
$$

(c) For all sequences $\left\{a_{k}, k \in \mathbb{N}\right\}$ satisfying (1) we have;

$$
\begin{equation*}
\text { The infinite series } \sum_{k=1}^{\infty} \frac{a_{k}}{k} \text { converges. } \tag{2}
\end{equation*}
$$

2. Find the radius of convergence and the convergence interval of the power series:

$$
\sum_{k=1}^{\infty} \frac{3^{k}}{\sqrt{k}}(x-4)^{k}
$$

3. (a) Give the definition of uniform convergence of a sequence of real-valued functions, using $\epsilon-\delta-N$ arguments/language.
Define the following sequence of functions $f_{n}: \mathbb{R} \mapsto \mathbb{R}$

$$
f_{n}(x)=\sin (x / n), \quad x \in \mathbb{R}, \quad n \in \mathbb{N}
$$

(b) Show that f_{n} converges uniformly on every bounded interval $(a, b) \subset \mathbb{R}$. What is its limit function?
(c) Show that f_{n} does not converge uniformly on \mathbb{R}.
4. Prove that the following function is analytic on $(-1,1)$ and determine its Maclaurin expansion. [3]

$$
h(x)=\frac{1}{(x+1)^{2}} .
$$

5. Consider on \mathbb{Z} the following metric

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ \frac{1}{2} & \text { if }|x-y|=1 \\ 2 & \text { if }|x-y| \geq 2\end{cases}
$$

Show that d does not define a metric on \mathbb{Z}.
6. Let (X, ρ) and (Y, τ) be metric spaces.
(a) Give the definition of a compact set in X.
(b) Let f be a continuous function from the metric space (X, ρ) to the metric space (Y, τ), and let C be a compact set in X. Prove that $f(C)$ is a compact set in Y.
(c) Let f be a continuous function from the metric space (X, ρ) to the metric space (Y, τ), and let $f(V)$ be a compact set in Y. Is V compact in X ? If this statement holds, then provide a proof, when false provide a counter example.
7. Consider the function $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$, given by

$$
f(x, y)= \begin{cases}|x y| \log \left(x^{2}+y^{2}\right) & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(a) At which points of $\mathbb{R}^{2} \backslash\{0,0\}$ is f differentiable?
(b) Prove that f is differentiable at $(0,0)$.

Figure 1: The sin-curve Γ in \mathbb{R}^{2}
8. In \mathbb{R}^{2} we consider the curve $\Gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in[0,2 \pi], y=\sin (x)\right\}$, as drawn in Figure 1 . We take the points $\mathbf{b}=(2 \pi, 0)$ and $\mathbf{a}=(0,0)$.
Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ be continuous differentiable. Prove that there exists a point $\mathbf{c}=\left(c_{1}, c_{2}\right)$ on Γ such that

$$
f(\mathbf{b})-f(\mathbf{a})=2 \pi \nabla f(\mathbf{c}) \cdot\left[\begin{array}{c}
1 \\
\cos \left(c_{1}\right)
\end{array}\right]
$$

9. Prove that there exist functions $u(x, y), v(x, y)$, and $w(x, y)$, and an $r>0$ such that u, v, w are continuous differentiable and satisfy the equations

$$
\begin{align*}
u^{3}+x v^{3}+x y-w & =0, \\
v^{2}-y w^{2}+x & =-2, \\
u v w-x y & =-1, \tag{3}
\end{align*}
$$

on $B_{r}(1,1)$ and satisfy $u(1,1)=0, v(1,1)=1, w(1,1)=2$.

Grade: $\frac{\text { score on test }}{35} \times 9+1 \quad$ (rounded off to one decimal place)

