(Class) Test-1: Analysis II Statistics and Analysis (202001347)

27 September 2021, 08:45—10:15, Therm-1

Total Points: 20

All answers must be motivated. Approach to a solution is equally important as the final answer. Use of an electronic calculator or a book is not allowed.

Good Luck!

1.	(a)	Give the definition of absolute convergence of a series of real numbers.	[2]

(b) Determine the convergence/divergence of the following series. In case a series converges, determine whether it also converges absolutely. [2+2]

(i.)
$$\sum_{k=1}^{\infty} (-1)^{2k} \frac{k^3 + \log(k)}{k + \exp(k)}$$
 (ii.)
$$\sum_{k=1}^{\infty} (-1)^k [1 - \exp(1/k)]$$

(c) Prove the following assertion: [3] Let a_k be a positive sequence $(a_k > 0)$, and suppose there exists an $r \ge 1$ such that for all $k \in \mathbb{N}$ there holds:

$$a_{k+2} \ge ra_k$$
.

Then the series $\sum_{k=1}^{\infty} a_k$ is divergent.

2. Consider the sequence of real valued functions given by:

$$f_n(x) = \sqrt{\sin(x/n) + x + 1}.$$
 (1)

- (a) Show that for every $x_1 > x_0 \ge 0$ the sequence in (1) converges uniformly on $[x_0, x_1]$ and determine its limit.
- (b) Show that the sequence in (1) converges pointwise on $[0, \infty)$, but not uniformly on that interval.
- (c) Determine the following limit [1.5]

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx. \tag{Xft}$$

3. (a) Find the convergence interval I of the power series: [2]

$$f(x) = \sum_{k=0}^{\infty} \sqrt{k} x^k.$$

(b) Show that f(x) is analytic in any open interval within I. [1.5]

(c) Does $f^{(2)}(0.5)$ exist? [1]

Grade: $\frac{\text{score on test}}{20} \times 9 + 1$ (rounded off to one decimal place)