Make-up Exam: Analysis II Statistics and Analysis (202001350)

November, 10, 2022, 08:45 - 11:45

Total Points: 36

[2]

All answers must be motivated.

Approach to a solution is equally important as the final answer.

The exam is closed-book and also, use of an electronic calculator is not allowed Good Luck!

1. Let the sequence $\{a_k,\ k\in\mathbb{N}\}$ be such that:

The infinite series
$$\sum_{k=1}^{\infty} a_k$$
 converges.

(a) If $a_k \geq 0$, $k \in \mathbb{N}$ and $\{b_k, k \in \mathbb{N}\}$ is a bounded sequence, then prove that

$$\sum_{k=1}^{\infty} a_k b_k < \infty.$$

- (b) Does the statement in part (a) also holds when we do not assume that $a_k \geq 0$? [2]
- 2. Find the radius of convergence and the convergence interval of the power series: [4]

$$\sum_{k=1}^{\infty} \frac{k \log(k+1)}{\sqrt{2+k^2}} (x-\pi)^k.$$

3. (a) Give the definition of pointwise convergence of a series of real-valued functions, using ϵ -N arguments/language. [1]

Define the following sequence of functions $f_n : \mathbb{R} \to \mathbb{R}$

$$f_n(x) = \frac{1}{n} \sin\left(\frac{x}{n+1}\right), \quad x \in \mathbb{R}, \quad n \in \mathbb{N}.$$

- (b) Show that $\sum_{n=1}^{\infty} f_n(x)$ converges pointwise on \mathbb{R} .
- (c) Show that $f(x) := \sum_{n=1}^{\infty} f_n(x)$ converges uniformly on every bounded interval of \mathbb{R} . [2]
- (d) Determine the value of the integral $\int_{-\pi}^{\pi} f(x)dx$.
- (e) Prove that there exists a constant M > 0 such that

$$|f'(x)| \le M$$

for all $x \in \mathbb{R}$.

4 Consider on R the following (candidate) metric

$$d(x,y) = |x^3 - y^3|$$

(a) Prove that for all $x, y \in \mathbb{R}$ there holds

[1]

$$d(x,y) \le d(x,0) + d(0,y)$$

(b) Does d define a metric on \mathbb{R} ?

[2]

- 5. Let (X, ρ) be a metric space and let E be a subset of X.
 - (a) Show that when E is bounded, then there exists an M > 0 such that for all $v, w \in E$ there holds $\rho(v, w) \leq M$.
 - (b) Give the definition of the boundary ∂E of the set E.
 - (c) Prove that the boundary ∂E is a closed subset of X.
- 6. Consider the function $g: \mathbb{R}^2 \to \mathbb{R}$, given by

$$g(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{x^4 + y^2} & (x,y) \neq (0,0), \\ 1 & (x,y) = (0,0). \end{cases}$$

(a) At which points of $\mathbb{R}^2 \setminus \{0,0\}$ is g continuous?

[2]

(b) Is g is continuous at (0,0)?

[2]

7. Let \mathcal{O} be an open subset of \mathbb{R}^n and let W be a compact and convex subset of \mathcal{O} .

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 function on \mathcal{O} . Prove that there exists a M > 0 such that

[3]

$$|f(\mathbf{b}) - f(\mathbf{a})| \le M \|\mathbf{b} - \mathbf{a}\| \quad \text{ for all } \mathbf{a}, \mathbf{b} \in W.$$

8. Prove that there exist functions u(z), and v(z), and an r > 0 such that u, v are continuous differentiable and satisfy the equations

$$u^{2} + v^{2} + z^{2} = 9,$$

$$3u + 2v - z = 1$$

on
$$B_r(1)$$
 and satisfy $u(1) = 2$, $v(1) = -2$.

[3]

Grade: $\frac{\text{score on test}}{36} \times 9 + 1$ (rounded off to one decimal place)