(Class) Test-2: Analysis II Statistics and Analysis (202001350)

25-October-2022, 08:45 - 10:15, NH-207

Total Points: 20

All answers must be motivated. Approach to a solution is equally important as the final answer. Use of an electronic calculator or a book is not allowed. Good Luck!

1. We define X to be the space consisting of the subsets of $\{1, \ldots, 2022\}$. On X we define the following candidate metric for $V_1, V_2 \subseteq \{1, \ldots, 2022\}$

 $\rho(V_1, V_2) = \text{ number of elements in } V_1 \cap V_2.$

Does ρ define a metric on X?

[2]

- 2. Let (Y, τ) be a metric space.
 - (a) Prove by means of the definition that if $V \subseteq Y$ is compact, then it is bounded. [2]
 - (b) Let $\{x_n\}$ be a sequence in Y, and let $y \in Y$ be given. Give the definition of $\{x_n\}$ converges (in Y) to y.
 - (c) Assume that $\{x_n\}$ converges to y, and let \mathbf{a} be an element of Y. Prove that $\tau(x_n, \mathbf{a}) \to \tau(y, \mathbf{a})$ as $n \to \infty$.
- 3. Let $f: \mathbb{R} \to \mathbb{R}^n$ be a C^1 -function.

Show that $g(t) := ||f(t)||^2$ (the Euclidian squared norm of f(t)) is differentiable on \mathbb{R} , and determine its derivative.

4. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$, given by

$$f(x,y) = \begin{cases} \frac{(x^2 + y^2)\log(x^2 + 1)}{\sin(x^2 + y^2)} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

- (a) Show that f differentiable on $\mathbb{R}^2 \setminus \{(0,0)\}.$
- (b) Determine whether f is differentiable at (0,0).
- 5. Let $\Omega := \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \geq 0, x_2 \geq 0\}$, and consider the function $f : \Omega \to \Omega$ given by

$$f(x_1, x_2) = (x_1^4 + x_1^2 x_2^2, x_2^4 + x_1^2 x_2^2).$$

Prove that f^{-1} exists and is differentiable on an open set $W \subset \Omega$ containing the point (2,2). Furthermore, compute $D(f^{-1})(2,2)$.

Grade: $\frac{\text{score on test}}{20} \times 9 + 1$ (rounded off to one decimal place)