Final Exam: Analysis-2 (202200237), MOD-02-AM: Structures and Systems

Instructors: Carlos Pérez Arancibia and Felix Schwenninger

Date/Time: 29-January-2024, 13:45 - 16:45

- Closed book exam! May use one single-sided handwritten A4-paper.
- All answers must be motivated, including the answers of Section C.
- Answers for Section A could use the four steps (practiced during Tutor Sessions).
- Section Grade: $\frac{\text{Obtained score}}{\text{Total points}} \times 9 + 1$ (rounded off to one decimal place)
- Course Grade: $0.4 \times \text{Grade_Section_A} + 0.6 \times \text{Grade_Section_C}$ (see Assessment Policy for details)
- Good Luck!

Section C: Total Points: 30

1. Evaluate the limit [10]

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left| f\left(\frac{k}{n}\right) - f\left(\frac{k-1}{n}\right) \right|$$

where

$$f(t) := \sin(\pi \ln(1+t)).$$

[Hint: Begin by proving the following identity which holds for all functions $f:[0,1] \to \mathbb{R}$ that are continuously differentiable:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left| f\left(\frac{k}{n}\right) - f\left(\frac{k-1}{n}\right) \right| = \int_{0}^{1} \left| f'(t) \right| dt.$$

Additionally, you could find the inequality $\sqrt{e} < 2$ helpful.]

2. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) := \begin{cases} x^2 y \sin\left(\frac{1}{x^2 + y^2}\right) & \text{when } (x,y) \neq (0,0), \\ 0 & \text{when } (x,y) = (0,0). \end{cases}$$

- (a) Prove from the definition that f is continuous at (0,0).
- (b) Compute the partial derivatives $\frac{\partial f}{\partial x}(x,y)$ and $\frac{\partial f}{\partial y}(x,y)$. [3]
- (c) Is f differentiable at (0,0)? [4]

3. Consider the integral:

$$I(\epsilon) := \iint_{D(\epsilon)} \frac{1}{x+y} dA, \quad 0 < \epsilon < 1,$$

where $D(\epsilon) \subset \mathbb{R}^2$ is the region bounded by the lines: $x + y = \epsilon$, x + y = 1, x = 0, and y = 0.

- (a) Evaluate $I(\epsilon)$ directly using Fubini's theorem. Does the improper integral $\lim_{\epsilon \to 0+} I(\epsilon)$ exist?
- (b) Evaluate $I(\epsilon)$ using the substitution (x,y) = (u uv, uv). [3]

[3]

(c) Evaluate $I(\epsilon)$ using the substitution $(x, y) = (u \cos v, u \sin v)$. [4]

[Hint: The trigonometric identity $\sin v + \cos v = \sqrt{2} \sin \left(v + \frac{\pi}{4}\right)$ could be helpful.]

Section A: Total Points: 20

4. (a) Find a closed-form expression for the series [5]

$$\sum_{k=1}^{\infty} \frac{2k}{k+1} (1-x)^k$$

and determine the largest set on which such expression is valid.

(b) Let $\alpha \ge 0$ and define $u_n : [0, \infty) \to \mathbb{R}$ by

$$u_n(x) = \frac{x^{\alpha}}{1 + n^2 x^2}, \quad n \in \mathbb{N}.$$

Show that $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [0,1] if $\alpha > 1$.

- 5. (a) Prove that if f(t) is a continuous function on [0,1], then $\int_0^1 |f(t)| dt = 0$ implies that f(t) = 0 for all $t \in [0,1]$.
 - (b) Let f(t) be a differentiable function on [0,1], and f'(t) is integrable on [0,1]. Assume that f(0) = 0 and $|f'(t)| \le |f(t)|$ for all $t \in (0,1)$. Prove that f(t) = 0 for all $t \in (0,1)$.

[Hint: Utilize the Fundamental Theorem of Calculus and consider changing the order of integration over a certain triangular region.]