Test T1 Differential Equations & Numerical Methods

Module

: AM M6 Dynamical Systems (201500103)

Date

: Friday December 21, 2018

Time

: 8:45 - 11:45 uur

Duration

: 180 min (In case of extra time: 225 min)

: 30 min (In case only Numerical Methods is tested)

: 150 min (In case only Differential Equations is tested)

Module-coordinator : H.G.E. Meijer

Examinator

: H.G.E. Meijer

Test Type

: Closed book

Supplements

: None

Tools allowed

: (Graphical) Calculator

Remarks:

- · Motivate your answers.
- This test consists of 3 pages, including this one, and contains 5 exercises.
- For this test you can get 36 points; i.e. grade = 1+points/4. The points for each exercise are mentioned below.
- If you only take Differential Equations, please skip Exc 5; If you only take Numerical Methods, hand in Exc 5 only. The grading is adjusted accordingly.
- Use UT exam paper only. Write your name and student number on each sheet of paper. Do not hand in your notes or scratch paper.

Subpoints:

2 14b 2 5a 1.5 **13**a 1b 4 3b 1 4c 2 5b 1.5 2a 6 3c 2 2 4d 3 5c 2b 1 24a 2 4e 3 5d 1

Grade = 1 + points/4

Exercises Differential Equations

Exercise 1. Consider the following differential equation

$$\frac{dx(t)}{dt} = \frac{1}{\sin(x(t))}. (1)$$

- (a) Sketch the direction field for (1) for -4 < x < 4, and include a few solutions.
- (b) Solve (1) with the initial condition $x(0)=\frac{\pi}{2}$. Also state the maximal interval for t, as well as the range of x(t).

Exercise 2. Define the matrix

$$A = \begin{pmatrix} 2 & 1 & -2 \\ -1 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}. \tag{2}$$

- (a) Compute e^{tA} .
- (b) Characterize all $x \in \mathbb{R}^3$ such that $\lim_{t \to \infty} e^{tA}x = 0$.

Exercise 3. We consider the following system with parameter \boldsymbol{b}

$$\begin{cases} \dot{x} = 2x + y - bx(x^2 + y^2) + x(x^2 + y^2)^2, \\ \dot{y} = 2y - x - by(x^2 + y^2) + y(x^2 + y^2)^2. \end{cases}$$
(3)

- (a) Transform the system to polar coordinates.
- (b) Determine the value(s) of b such that system (3) has exactly one periodic orbit.
- (c) Sketch the phase plane in the (x, y)-plane for b = 1 and b = 3.

Exercise 4. Consider the following system with parameter a

$$\begin{cases} x' = -y, \\ y' = x + \frac{1}{2}ay^2 - x^3. \end{cases}$$
 (4)

- (a) Determine the type of the three equilibria, for all $a \in \mathbb{R}$.
- (b) For a=0, show that system (4) is Hamiltonian, and also determine a Hamiltonian.
- (c) Plot the phase portrait for a=0.
- (d) Show that $E(x,y) = e^{ax} \left(a^4 y^2 2a^3 x^3 + 6a^2 x^2 + 2a^3 x 12ax + 12 2a^2 \right)$ is a conserved quantity for system (4) for all $a \neq 0$.
- (e) Plot the phase portrait for a=1 and a=-1. Hint: The positions of the extrema of E(x,y) along the x-axis, i.e., the equilibria, do not change.

T.O.P. for Numerical Methods

Exercises Numerical Methods

Exercise 5. Using the trapezoidal rule for integration of the function

$$f(x) = 2e^{-x-x^2} + g(x)$$
, where $g(x) = (3e^{-2} - 1)x^2$

on the interval [0,1], i.e.,

$$I = \int_0^1 f(x) \mathrm{d}x$$

we obtain numerical approximations I(h) at step size h as given in the following table:

h	numerical value $I(h)$
0.5000	0.817286388000510
0.2500	0.816212596855330
0.1250	0.816148425997833
0.0625	0.816144458517675

(a) Determine from these data the order of convergence of this proces, i.e., determine the value of \boldsymbol{p} in the relation

$$I(h) = I + a_p h^p + O(h^{p+1}).$$

(b) Determine the best approximation for ${\cal I}$ by extrapolating once. Also specify an estimate for the absolute error.

(c) Explain the value of p as determined in (a) using the following theorem.

Theorem: For a sufficiently differentiable function f the approximation I(h) for the integral as obtained by the trapezoidal rule obeys

$$I(h) = \int_0^1 f(x)dx + a_2h^2 + a_4h^4 + \dots + a_{2m}h^{2m} + O(h^{2m+2}),$$

where

$$a_{2k} = \frac{b_{2k}}{(2k)!} (f^{(2k-1)}(1) - f^{(2k-1)}(0))$$

and known numbers b_{2k} .

(d) Using the same theorem, what would you expect for the error after one extrapolation, if the trapezoidal rule would be applied to the function g only?