Dynamical Systems (201500103) — test 2

Date: 13-01-2020

Time: 8:45-11:45 (45 minutes extra for students with special rights)

Place:

Course coordinator: Gjerrit Meinsma Allowed aids during test: a basic calculator

1. Consider the system described by

$$\dot{x} = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ \beta \end{bmatrix} u
y = \begin{bmatrix} 0 & 1 \end{bmatrix} x.$$
(1)

- (a) For which β is state model (1) controllable?
- (b) Determine the reachable subspace of state model (1). (The answer might depend on β)
- (c) For which β is state model (1) observable?
- (d) Determine for (1) an observer, with observer poles -1 and -3.
- (e) Take $\beta = -2$. Determine a controller with input *y* and output *u* that makes the closed loop system asymptotically stable.
- (f) Determine a differential equation $\ddot{y}+p_1\dot{y}+p_0y=q_1\dot{u}+q_0u$ whose observer canonical form equals (1).

2. Consider the "filtering" configuration

Here z = m + u, and N(s) and D(s) are polynomials.

- (a) Determine $H_{z/r}(s)$
- (b) This system has input r and output m, y, u. Prove that the above interconnected system is asymptotically stable if-and-only-if $\mathcal{D}_K(s)$ is an asymptotically stable polynomial.
- (c) Determine a constant K(s) such that the mapping from r to z has zero DC-gain.
- (d) Let $r(t) = \mathbb{I}(t)\cos(\omega t)$. For which $\omega > 0$ is there no asymptotically stable K(s) such that $\lim_{t\to\infty} z(t) = 0$?

3. Let $u, y : \mathbb{R} \to \mathbb{R}$. Consider the system $y = \mathcal{H}(u)$ defined by

$$y(t) = \int_{-1}^{1} \tau^2 u(t-\tau) d\tau.$$

- (a) Is this system linear?
- (b) Is this system time invariant?
- (c) Determine the maximal peak-to-peak gain $\|\mathcal{H}\|_1$.

4. Three questions.

- (a) Formulate the Kalman Observability Decomposition theorem.
- (b) Give a system that is detectable but not observable.
- (c) Suppose a 5×5 matrix A has 5 different eigenvalues, of which 2 have positive real part. If $\dot{x} = Ax + Bu$ is stabilizable, then what you say about the rank of the controllability matrix?

5. Numerical Methods 1:

(a) What is the expression for the condition number of the problem: "compute the value of the function f in a point x"? Compute the condition number in case f is given by

$$f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

- (b) Consider x = 0.68 with a possible absolute error of 0.01. We wish to compute f(x).
 - i. What is the value of the condition number in this case?
 - ii. Given the condition number from 5(b)i, what can you conclude regarding the relative error with which f(0.68) is computed?
- 6. **Numerical Methods 2**: with the help of a numerical integration process we obtain for a certain integral I the following approximations I(h) as function of step size h:

h	I(h)
1/2	3.26914555200204
1/4	3.26485038742132
1/8	3.26459370399133
1/16	3.26457783407070

- (a) Determine the order p of the numerical integration process based on the data in the table, i.e., determine the value of p from the expression $I(h) = I + c h^p + O(h^{p+1})$, $p \in \mathbb{N}$.
- (b) Perform one extrapolation to obtain an improved approximation for *I*. Include an estimate of the absolute error.

problem:	1	2	3	4	5	6
points:	2+2+2+2+2	1+2+1+2	2+2+2	2+2+2	1.5+1.5	1+2

Exam grade: 1 + 9p/36.