AM-M6-NM Test 1: Numerical Methods

Course: AM-M6 - Numerical Mathematics (202001356)

Module : Dynamical Systems

Date: Friday December 4, 2020

Author: Bernard Geurts

Time : 09:00 - 09:30 (09:38) uur

Duration: 30 min (in case of extra time: 38 min)

Notice:

• Motivate your answers.

• This test consists of 2 pages, including this one, and contains 2 exercises.

• For this test you can get a grade = 1+#points with maximally 9 points distributed over the exercise as detailed below.

• Only use UT exam paper. Write your name and student number on each sheet of paper. Do not hand in your notes on scratch paper.

Points rewarded:

Exercise	Points
1a	2
1b	1
1c	1
2a	2
2b	3

Grade = 1+#points

Exercises Numerical Mathematics

Exercise 1.

(a) What is the expression for the condition number of the problem: 'compute the value of the function f in a point x'? Compute the condition number in case f is given by

 $f(x) = \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

- (b) Consider x = 0.68 with a possible absolute error of 0.01. We wish to compute f(x). What is the value of the condition number in this case?
- (c) Given the condition number from (b), what can you conclude regarding the relative error with which f(0.68) is computed?

Exercise 2. We want to approximate a quantity I(0) and obtain a sequence of numerical estimates I(h) at step sizes h as given in the following table:

h	numerical value $I(h)$
0.5000	0.817286388000510
0.2500	0.816212596855330
0.1250	0.816148425997833
0.0625	0.816144458517675

(a) Determine from these values the order of convergence of this proces, i.e., determine the value of p in the relation

$$I(h) = I(0) + ah^p + O(h^{p+1}).$$

(b) Determine the best approximation for I(0) from this information by extrapolating once. Also specify an estimate for the absolute error.