Systems Theory (202001355)

Date: 29-01-2021

Time: 9:45–12:15 (till 12:52 for students with special rights)

Place: RA 2334

Course coordinator: Gjerrit Meinsma Allowed aids during test: a basic calculator

1. Let $\alpha, \beta \in \mathbb{R}$. Consider the system

$$\dot{x} = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u
y = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} x.$$
(1)

Notice that y is a vector with two entries.

- (a) For which α, β is system controllable?
- (b) For which α , β is system stabilizable?
- (c) For which α , β is the system observable?
- (d) Let $\alpha = \beta = -1$ determine *all* state feedback laws u = -Fx that place the two poles at -1 and -2.
- (e) Let $\alpha = \beta = -1$. Determine an observer with both observer poles -2.
- (f) Determine the transfer matrix from u to y.
- 2. Consider the following configuration

- (a) Determine the transfer function from w to y.
- (b) Let $P(s) = s^2/(s^2 + 1)$ and w = 0. Are there stabilizing controllers K(s) such that $\lim_{t \to \infty} y(t) = r_0$ if $r(t) = r_0 \mathbb{I}(t)$?
- (c) Recall that a polynomial $Q(s) := q_3 s^3 + q_2 s^2 + q_1 s + q_0$ is asymptotically stable iff q_3, q_2, q_1, q_0 have the same sign and $q_2 q_1 > q_3 q_0$. Let $P(s) = s^2/(s^2+1)$. Determine all K(s) of the form K(s) = 1/(as+b) that stabilize the closed loop.

3. Let $u, y : \mathbb{R} \to \mathbb{R}$. Consider the system $y = \mathcal{H}(u)$ defined by

$$y(t) = u(\alpha t + \beta).$$

Here, α , β are real numbers.

- (a) For which α , β is the system linear?
- (b) For which α , β is the system time-invariant?
- (c) "Causality" roughly speaking means that for each $t_0 \in \mathbb{R}$ the output $y(t_0)$ is a function of "the past" $\{u(t)|t \le t_0\}$ of the input. For which α, β is our system causal?

4. Four questions.

- (a) Formulate the *Hautus test* for observability of a system $\dot{x} = Ax + Bu$, y = Cx + Du.
- (b) Suppose a system $y = \mathcal{H}(u)$ is LTI and BIBO-stable, and let h be its impulse response. Show that the response y(t) to $u(t) = e^{i\omega t} \mathbb{I}(t)$ exists and equals

$$y(t) = \left(\int_{-\infty}^{t} h(\tau) e^{-i\omega\tau} d\tau \right) e^{i\omega t}.$$

In your derivation indicate where you use LTI and/or BIBO-stability.

(c) Determine the Kalman observability decomposition of

$$\dot{x} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} x + \begin{bmatrix} 3 \\ 4 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} x.$$

(d) Determine an equivalent state representation of

$$\ddot{y}-2\dot{y}=2\ddot{u}+2\dot{u}-3u.$$

problem:	1	2	3	4
points:	2+2+2+2+1	2+2+2	2+2+2	1+2+2+2

Exam grade: 1 + 9p/30.