Numerical Mathematics (202200241), 2022-2023 Exam, June 23rd 2023, 8.45-11.45

All of your answers need to be justified. The use of electronic devices is not allowed.

Exercise 1. Let $m, n \in \mathbb{N}$. Denote $||x||_{\infty} = \max_{1 \leq j \leq n} |x_j|$ the max-norm for $x \in \mathbb{R}^n$. Let $\mathbf{A} = (a_{i,j}) \in \mathbb{R}^{m \times n}$, $1 \leq i \leq m$, $1 \leq j \leq n$, be a matrix. Show that the induced matrix norm is given by

$$\|A\|_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{i,j}|.$$

Exercise 2. We search the linear model g(t) = a + bt that fits the data points

- (i) Formulate the corresponding least-squares problem to determine $a,b\in\mathbb{R}$.
- (ii) Determine the least-squares solution a, b.
- (iii) Show that a, b depend continuously on g_i in the max-norm.

Exercise 3. Let $a \in \mathbb{R}$ with a > 0. We search the positive solution $x \in \mathbb{R}$ of the equation

$$x^2 = a. (1)$$

(i) Show that Newton's method applied to (1) gives the sequence $\{x_k\}_{k\in\mathbb{N}}$ defined by

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right), \quad x_0 > \sqrt{a},$$

provided that all $x_k \neq 0 \ \forall k \in \mathbb{N}_0$.

- (ii) Use mathematical induction to show that $x_k > \sqrt{a}$ for all $k \in \mathbb{N}_0$.
- (iii) Show that $\{x_k\}_{k\geq 0}$ is strictly decreasing.
- (iv) Show that x_k converges to \sqrt{a} (**Hint:** Use (ii) and (iii).)
- (v) Show that $\{x_k\}_{k\in\mathbb{N}}$ converges quadratically to \sqrt{a} .

Exercise 4. (i) Compute the LU-decomposition of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 1 & -1 & 3 \end{pmatrix}.$$

- (ii) Use the LU-decomposition calculated in (i) to compute the determinant of \boldsymbol{A} .
- (iii) Use the LU-decomposition calculated in (i) to compute the inverse of A.
- (iv) Compute the condition number of A with respect to the max-norm $\|\cdot\|_{\infty}$. (Hint: Ex. 1.)

Exercise 5. For the approximation of $\int_0^1 f(x)dx$ consider the quadrature formula

$$Q(f) = w_0 f(0) + w_1 f(x_1).$$

- (i) Determine w_0 , w_1 and x_1 such that the degree of exactness is at least two.
- (ii) Determine the degree of exactness of Q(f).

Exercise 6. Let $t_i = ih$ for h > 0 and $i \in \mathbb{N}_0$, and let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous and Lipschitz-continuous in the second argument. Consider the implicit Euler method

$$y_{i+1} = y_i + h f(t_{i+1}, y_{i+1}), \quad i \ge 0,$$
(2)

to approximate the solution y(t) to y'(t) = f(t, y(t)), t > 0, and $y(0) = y_0 \in \mathbb{R}$ given.

- (i) Give a condition on h such that y_{i+1} in (2) exists and is unique. **Hint:** For which h > 0 is $\Psi(y) = y_i + hf(t_{i+1}, y)$ a contraction?
- (ii) Determine the order of consistency of (2).

Exercise				4.	5.	6.	total	Grade
Points	4	1+2+1	2+3+1+2+2	2+1+4+1	3+1	3+3	36	(Points $+4$)/4