Numerical Mathematics (202200241), 2022-2023 Resit, July 7th 2023, 8.45-11.45

All of your answers need to be justified. The use of electronic devices is not allowed.

Exercise 1. (i) Let $m, n \in \mathbb{N}$ and let $\mathbf{A} = (a_{i,j}) \in \mathbb{R}^{m \times n}$, $1 \leq i \leq m$, $1 \leq j \leq n$, be a matrix. Denote by

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2},$$
 (1)

the Frobenius norm for $A \in \mathbb{R}^{m \times n}$. Show that

$$\|\boldsymbol{A}\|_F = \sqrt{\operatorname{trace}\left(\boldsymbol{A}^T\boldsymbol{A}\right)},$$

where trace(A) is defined to be the sum of all diagonal elements of A.

(ii) Let $A \in \mathbb{R}^{n \times n}$. Show that for any matrix norm $\|\cdot\|_M$, which is consistent to vector norm $\|\cdot\|_V$, it holds that

$$\rho(\boldsymbol{A}) \leq \|\boldsymbol{A}\|_{M},$$

where $\rho(\mathbf{A}) := \max\{|\lambda| : \lambda \text{ is an eigenvalue of } \mathbf{A}\}$ is the spectral radius of \mathbf{A} .

Exercise 2. We search the model $g(t) = a + b\sin(t) + c\cos(t)$ that fits the data points

- (i) Formulate the corresponding least-squares problem to determine $a, b, c \in \mathbb{R}$.
- (ii) Determine the least-squares solution a, b, c.
- (iii) Show that a, b, c depend continuously on g_i in the max-norm.

Exercise 3. Let $f: \mathbb{R} \to \mathbb{R}$ with $f(x) = \frac{1}{2} \exp(x/2)$ be given. Show that there is exactly one solution of x = f(x) in the interval [0,1] by performing the following steps:

- (i) Show that $0 \le f(x) \le 1$ for all $x \in [0, 1]$.
- (ii) Show that f is a contraction on [0, 1].
- (iii) Formulate the Newton iteration for solving x f(x) = 0, and perform the first step for $x_0 = 0$.

Exercise 4. (i) Compute the LU-decomposition of the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}.$$

- (ii) Use the LU-decomposition calculated in (i) to compute the determinant of A.
- (iii) Use the LU-decomposition calculated in (i) to compute the inverse of A.
- (iv) Compute the condition number of A with respect to the Frobenius norm. (Hint: Eq. (1).)

Exercise 5. For the approximation of $\int_0^1 f(x)dx$ consider the quadrature formula

$$Q(f) = w_0 f\left(\frac{1}{2} - \frac{1}{2\sqrt{3}}\right) + w_1 f\left(\frac{1}{2} + \frac{1}{2\sqrt{3}}\right).$$

- (i) Determine $w_0, w_1 \in \mathbb{R}$ such that all polynomials of degree less or equal to one are integrated exactly.
- (ii) Determine the degree of exactness of Q(f).

Exercise 6. Let $t_i = ih$ for h > 0 and $i \in \mathbb{N}_0$, and let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous. Consider the modified Euler method

$$y_{i+1/2} = y_i + \frac{h}{2}f(t_i, y_i), \qquad i \ge 0,$$
 (2a)

$$y_{i+1} = y_i + h f(t_i + \frac{h}{2}, y_{i+1}), \quad i \ge 0,$$
 (2b)

to approximate the solution y(t) to $y'(t)=f(t,y(t)),\,t>0,$ and $y(0)=y_0\in\mathbb{R}$ given.

- (i) Show that (2) is a one-step method and give the increment function.
- (ii) Show that (2) is consistent.
- (iii) Determine the order of consistency of (2) assuming sufficient regularity of f.

Exercise	1.	2.	3.	4.	5 .	6.	total	Grade
Points	2+2	2+2+1	2+2+2	2+1+4+1	3+4	1 + 1 + 4	36	(Points $+4$)/4