Systems Theory (202001355) – Exam

Date:

15-01-2024

Time:

8:45-11:45 (till 12:30 for students with special rights)

Place:

SP5

Course coordinator:

Gjerrit Meinsma

Allowed aids during test: a basic calculator

1. Consider the system described by the differential equation

$$\ddot{y}(t) - 2\dot{y}(t) - 3y(t) = \beta \dot{u}(t) + u(t). \tag{1}$$

(a) Determine an equivalent state model

$$\dot{x} = Ax + Bu,
y = Cx + Du.$$
(2)

(Equivalent means: (u, y) satisfies (1) if-and-only-if there is an x such that (u, x, y) satisfies (2).)

- (b) For which β is state model (2) controllable?
- (c) For which β is state model (2) stabilizable?
- (d) Let $\beta = 1$. Determine an F such that A BF has eigenvalues -1 (twice).
- (e) Take $\beta = 1$. Determine a controller with input y and output u that makes the closed loop system asymptotically stable.
- 2. Consider the system with disturbance w:

- (a) Determine the transfer function from w to u.
- (b) Suppose P(s) = 1, K(s) = 1/s, and that $w(t) = \sin(t)$. Determine numbers A, ω, b such that $\lim_{t\to\infty} y(t) - A\sin(\omega t + b) = 0$.
- (c) Suppose P(s) = 1 and $w(t) = \sin(t)$, and that K(s) stabilizes the closed loop system and such that $\lim_{t\to\infty} y(t) = 0$. Show that K(s) must have the form

$$K(s) = \frac{N_K(s)}{(s^2 + 1)D_K(s)}$$

for certain polynomials $N_K(s)$, $D_K(s)$.

(d) Suppose P(s) = 1, and that $w(t) = \sin(t)$. Determine a stabilizing controller K(s) such that $\lim_{t\to\infty} y(t) = 0$.

3. Consider

$$\dot{x} = \begin{bmatrix} 3 & -4 \\ 2 & -3 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & -2 \end{bmatrix} x$$

- (a) Determine the Kalman Observability Decomposition of this system.
- (b) Determine the impulse response of this system (assumed initially-at-rest).
- 4. Let $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{k \times n}$. Consider the **discrete time** system

$$x(t+1) = Ax(t),$$
 $t \in \mathbb{Z},$
 $y(t) = Cx(t).$

This discrete-time system is said to be *observable* if there is a $T \in \mathbb{N}$ such that x(0) follows uniquely from $y(0), y(1), \dots, y(T)$.

Prove that the discrete-time system is observable if-and-only-if the *observability* matrix (as we know from our course) has rank n.

5. Three questions.

- (a) What is the *frequency response* of the system described by $\dot{x} = Ax + Bu$, y = Cx + Du?
- (b) Is the system $y(t) = e^t u(t)$ linear?
- (c) Is the system $y(t) = e^t u(t)$ time-invariant?
- 6. *LQ control.* Let $b, c \in \mathbb{R}$ and both nonzero. Consider the scalar system

$$\dot{x}(t)=bu(t),\quad y(t)=cx(t),\quad x(0)=x_0$$

and standard LQ cost $\int_0^\infty y^2(t) + u^2(t) dt$.

- (a) Determine the input u(t) (as a function of x(t), b, c) that minimizes the LQ cost over all stabilizing inputs, and determine the eigenvalue of the corresponding closed loop. *Hint: the Algebraic Riccati Equation is* $A^{T}P + PA + C^{T}C PBB^{T}P = 0$.
- (b) What happens with the optimal cost as $c \to \infty$, and explain in words why this makes sense.

opgave:	1	2	3	4	5	6
punten:	2+2+2+2+2	2+2+2+2	2+2	2	2+2+2	3+3

Exam grade: 1 + 9p/36.